These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 6299476)

  • 21. Choline acetyltransferase induction in cultured neurons: dissociated spinal cord cells are dependent on muscle cells, organotypic explants are not.
    Meyer T; Burkart W; Jockusch H
    Neurosci Lett; 1979 Jan; 11(1):59-62. PubMed ID: 431887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cholinergic function in cultures of mouse spinal cord neurons.
    Wang FZ; Nelson PG; Fitzgerald SC; Hersh LB; Neale EA
    J Neurosci Res; 1990 Mar; 25(3):312-23. PubMed ID: 2325157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Arachidonic acid increases choline acetyltransferase activity in spinal cord neurons through a protein kinase C-mediated mechanism.
    Chalimoniuk M; King-Pospisil K; Pedersen WA; Malecki A; Wylegala E; Mattson MP; Hennig B; Toborek M
    J Neurochem; 2004 Aug; 90(3):629-36. PubMed ID: 15255940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distribution of choline acetyltransferase and NADPH diaphorase in the spinal cord of the pigeon.
    Necker R
    Anat Embryol (Berl); 2004 Jun; 208(3):169-81. PubMed ID: 15112081
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enrichment of spinal cord cell cultures with motoneurons.
    Berg DK; Fischbach GD
    J Cell Biol; 1978 Apr; 77(1):83-98. PubMed ID: 566275
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunohistochemical localization of choline acetyltransferase in rabbit spinal cord and cerebellum.
    Kan KS; Chao LP; Eng LF
    Brain Res; 1978 May; 146(2):221-9. PubMed ID: 348269
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Histochemistry of choline acetyltransferase in the spinal cord and spinal ganglia of the cat.
    Motavkin PA; Okhotin VE
    Neurosci Behav Physiol; 1980; 10(4):307-10. PubMed ID: 7443031
    [No Abstract]   [Full Text] [Related]  

  • 28. Preferential cholinergic projections by embryonic spinal cord neurons within cocultured mouse superior cervical ganglia.
    Chalazonitis A; Crain SM; Kessler JA
    Brain Res; 1988 Aug; 458(2):231-48. PubMed ID: 3208105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Choline acetyltransferase activity is increased in combined cultures of spinal cord and muscle cells from mice.
    Giller EL; Schrier BK; Shainberg A; Fisk HR; Nelson PG
    Science; 1973 Nov; 182(4112):588-9. PubMed ID: 4270498
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ hybridization study of the distribution of choline acetyltransferase mRNA and its splice variants in the mouse brain and spinal cord.
    Trifonov S; Houtani T; Hamada S; Kase M; Maruyama M; Sugimoto T
    Neuroscience; 2009 Mar; 159(1):344-57. PubMed ID: 19162134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of phosphodiesterase isoforms 2, 5, and 9 in the regulation of NO-dependent and NO-independent cGMP production in the rat cervical spinal cord.
    de Vente J; Markerink-van Ittersum M; Vles JS
    J Chem Neuroanat; 2006 Jun; 31(4):275-303. PubMed ID: 16621445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endogenous and exogenous factors support neuronal survival and choline acetyltransferase activity in embryonic spinal cord cultures.
    Manthorpe M; Luyten W; Longo FM; Varon S
    Brain Res; 1983 May; 267(1):57-66. PubMed ID: 6860950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noradrenaline reduces the ATP-stimulated phosphorylation of p38 MAP kinase via beta-adrenergic receptors-cAMP-protein kinase A-dependent mechanism in cultured rat spinal microglia.
    Morioka N; Tanabe H; Inoue A; Dohi T; Nakata Y
    Neurochem Int; 2009 Sep; 55(4):226-34. PubMed ID: 19524113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of beta-adrenergic receptors and the in vitro accumulation of cyclic AMP in the chick spinal cord.
    Prozialeck WC; Pylypiw A; Ross L
    Brain Res; 1982 Jan; 255(1):49-63. PubMed ID: 6275958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A neurite-promoting factor from muscle supports the survival of cultured chicken spinal motor neurons.
    Jeong SJ; Oh TH; Markelonis GJ
    J Neurobiol; 1991 Jul; 22(5):462-74. PubMed ID: 1716301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential regulation of the high affinity choline transporter and the cholinergic locus by cAMP signaling pathways.
    Brock M; Nickel AC; Madziar B; Blusztajn JK; Berse B
    Brain Res; 2007 May; 1145():1-10. PubMed ID: 17320829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Source and target cell specificities of a conditioned medium factor that increases choline acetyltransferase activity in cultured spinal cord cells.
    Godfrey EW; Schrier BK; Nelson PG
    Dev Biol; 1980 Jun; 77(2):403-18. PubMed ID: 7399131
    [No Abstract]   [Full Text] [Related]  

  • 38. The dynamics of choline acetyltransferase and acetylcholinesterase changes in dog spinal cord during ischemia.
    Malatová Z; Chavko M; Marsala J
    Gen Physiol Biophys; 1984 Jun; 3(3):231-8. PubMed ID: 6479579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of extracellular signals in the differentiation of cholinergic neurons from the CNS and PNS in culture.
    Ferrand C; Giess MC; Raynaud B; Swerts JP; Delteil C; Clarous D; Weber M
    J Physiol (Paris); 1985; 80(4):233-7. PubMed ID: 2871180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The postnatal development of norepinephrine-stimulated cyclic AMP accumulation in rat spinal cord.
    Simmons K; Jones DJ
    Brain Res; 1985 Feb; 350(1-2):306-10. PubMed ID: 2580606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.