These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 629971)

  • 1. Regulation of hepatic synthesis of proteins by the chronology of protein ingestion.
    Lardeux B; Bourdel G; Girard-Globa A
    Biochim Biophys Acta; 1978 Mar; 518(1):113-24. PubMed ID: 629971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian variations of liver free amino acid content in mixed-fed and protein-meal-fed rats.
    Bourdel G; Robin D; Robin P; Kandé J; Lecerf J
    J Nutr; 1981 Sep; 111(9):1536-42. PubMed ID: 7277033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portal insulin and glucagon in rats fed proteins as a meal: immediate variations and circadian modulations.
    Jarrousse C; Lardeux B; Bourdel G; Girard-Globa A; Rosselin G
    J Nutr; 1980 Sep; 110(9):1764-73. PubMed ID: 6997444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity of several enzymes of amino acid catabolism in the liver of rats fed protein as a meal.
    Bourdel G; Hitier Y; Lardeux B; Girard-Globa A
    Reprod Nutr Dev (1980); 1983; 23(5):875-81. PubMed ID: 6139852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of diets with different levels of protein and energy on liver albumin content in the rat.
    Maurice M; Lardeux B; De Saint-Steban C; Bourdel G; Feldmann G
    J Nutr; 1986 Nov; 116(11):2132-41. PubMed ID: 3540234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-body nitrogen and splanchnic amino acid metabolism differ in rats fed mixed diets containing casein or its corresponding amino acid mixture.
    Daenzer M; Petzke KJ; Bequette BJ; Metges CC
    J Nutr; 2001 Jul; 131(7):1965-72. PubMed ID: 11435515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of protein synthesis and enzyme accumulation in the rat pancreas by amount and timing of dietary protein.
    Girard-Globa A; Bourdel G; Lardeux B
    J Nutr; 1980 Jul; 110(7):1380-90. PubMed ID: 7381602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of dietary amino acids on transfer ribonucleic acid charging levels in rat liver.
    Shenoy ST; Rogers QR
    J Nutr; 1978 Sep; 108(9):1412-21. PubMed ID: 249332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of calorie restriction and protein deficiency on protein metabolism in rats.
    Moustafa A el-H ; Borai IH; Shoukry S
    Z Ernahrungswiss; 1980 Sep; 19(3):166-72. PubMed ID: 6777999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Schedule of protein ingestion and circadian variations of glycogen phosphorylase, glycogen synthetase and phosphoenolpyruvate carboxykinase in rat liver.
    Peret J; Chanez M; Bois B
    J Nutr; 1978 Feb; 108(2):265-72. PubMed ID: 413891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in leucine kinetics during meal absorption: effects of dietary leucine availability.
    Nissen S; Haymond MW
    Am J Physiol; 1986 Jun; 250(6 Pt 1):E695-701. PubMed ID: 3521316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of amino acid imbalance on polysome profiles and 14C-labeled amino acid incorporation into tissue proteins in rats.
    Yasukawa T; Yoshida A
    J Nutr Sci Vitaminol (Tokyo); 1980; 26(5):461-73. PubMed ID: 7218048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiency of dietary EAA preferentially inhibits mRNA translation of ribosomal proteins in liver of meal-fed rats.
    Anthony TG; Reiter AK; Anthony JC; Kimball SR; Jefferson LS
    Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E430-9. PubMed ID: 11500297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein synthesis in liver, muscle, and brain of rats fed a high tyrosine-low protein diet.
    Ip C; Harper AE
    J Nutr; 1975 Jul; 105(7):885-93. PubMed ID: 1138033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian variation of liver metabolites and amino acids in rats adapted to a high protein, carbohydrate-free diet.
    Robinson JL; Foustock S; Chanez M; Bois-Joyeux B; Peret J
    J Nutr; 1981 Oct; 111(10):1711-20. PubMed ID: 7288496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dietary proteins and amino acid deficiencies on urinary excretion of nitrogen and the urea synthesizing system in rats.
    Hayase K; Yokogoshi H; Yoshida A
    J Nutr; 1980 Jul; 110(7):1327-37. PubMed ID: 6770064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between protein intake and hepatic protein synthesis in rats.
    Eisenstein RS; Harper AE
    J Nutr; 1991 Oct; 121(10):1581-90. PubMed ID: 1765822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid switch of hepatic fatty acid metabolism from oxidation to esterification during diurnal feeding of meal-fed rats correlates with changes in the properties of acetyl-CoA carboxylase, but not of carnitine palmitoyltransferase I.
    Moir AM; Zammit VA
    Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):241-6. PubMed ID: 8097087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid regulation of synthesis of ribonucleic acid and protein in the liver of rats.
    Wannemacher RW; Wannemacher CF; Yatvin MB
    Biochem J; 1971 Sep; 124(2):385-92. PubMed ID: 5158508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex interaction between circadian rhythm and diet on bile acid homeostasis in male rats.
    Eggink HM; Oosterman JE; de Goede P; de Vries EM; Foppen E; Koehorst M; Groen AK; Boelen A; Romijn JA; la Fleur SE; Soeters MR; Kalsbeek A
    Chronobiol Int; 2017; 34(10):1339-1353. PubMed ID: 29028359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.