BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 63)

  • 1. Enzymic reactions of fatty acid hydroperoxides in extracts of potato tuber. II. Conversion of 9- and 13-hydroperoxy-octadecadienoic acids to monohydroxydienoic acid, epoxyhydroxy- and trihydroxymonoenoic acid derivatives.
    Galliard T; Phillips DR; Matthew JA
    Biochim Biophys Acta; 1975 Nov; 409(2):157-71. PubMed ID: 63
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymic reactions of fatty acid hydroperoxides in extracts of potato tuber. I. Comparison 9D- and 13L-hydroperoxy-octadecadienoic acids as substrates for the formation of a divinyl ether derivative.
    Galliard T; Matthew JA
    Biochim Biophys Acta; 1975 Jul; 398(1):1-9. PubMed ID: 238639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The enzymic conversion of linoleic acid into 9-(nona-1',3'-dienoxy)non-8-enoic acid, a novel unsaturated ether derivative isolated from homogenates of Solanum tuberosum tubers.
    Galliard T; Phillips DR
    Biochem J; 1972 Sep; 129(3):743-53. PubMed ID: 4658996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion of linoleic acid hydroperoxide to hydroxy, keto, epoxyhydroxy, and trihydroxy fatty acids by hematin.
    Dix TA; Marnett LJ
    J Biol Chem; 1985 May; 260(9):5351-7. PubMed ID: 3988758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enzymic conversion of linoleic acid hydroperoxide by flax-seed hydroperoxide isomerase.
    Veldink GA; Vliegenthart JF; Boldingh J
    Biochem J; 1970 Nov; 120(1):55-60. PubMed ID: 5494229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of metabolic pathway of linoleic acid 9-hydroperoxide in cytosolic fraction of potato tubers and identification of reaction products.
    Kimura H; Yokota K
    Appl Biochem Biotechnol; 2004; 118(1-3):115-32. PubMed ID: 15304744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of linoleic acid hydroperoxides by a cysteine . FeCl3 catalyst as a model for similar biochemical reactions. II. Specificity in formation of fatty acid epoxides.
    Gardner HW; Kleiman R
    Biochim Biophys Acta; 1981 Jul; 665(1):113-24. PubMed ID: 7284409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of threo-11-hydroxy-trans-12: 13-epoxy-9-cis-octadecenoic acid by enzymic isomerisation of 13-L-hydroperoxy-9-cis, 11-transoctadecadienoic acid by soybean lipoxygenase-1.
    Garssen GJ; Veldink GA; Vliegenthart JF; Boldingh J
    Eur J Biochem; 1976 Feb; 62(1):33-6. PubMed ID: 814001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An epoxy alcohol synthase pathway in higher plants: biosynthesis of antifungal trihydroxy oxylipins in leaves of potato.
    Hamberg M
    Lipids; 1999 Nov; 34(11):1131-42. PubMed ID: 10606035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipoxygenase from potato tubers. Partial purification and properties of an enzyme that specifically oxygenates the 9-position of linoleic acid.
    Galliard T; Phillips DR
    Biochem J; 1971 Sep; 124(2):431-8. PubMed ID: 5003472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient and specific conversion of 9-lipoxygenase hydroperoxides in the beetroot. Formation of pinellic acid.
    Hamberg M; Olsson U
    Lipids; 2011 Sep; 46(9):873-8. PubMed ID: 21744276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hidden stereospecificity in the biosynthesis of divinyl ether fatty acids.
    Hamberg M
    FEBS J; 2005 Feb; 272(3):736-43. PubMed ID: 15670154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipoxygenase is irreversibly inactivated by the hydroperoxides formed from the enynoic analogues of linoleic acid.
    Nieuwenhuizen WF; Van der Kerk-Van Hoof A; van Lenthe JH; Van Schaik RC; Versluis K; Veldink GA; Vliegenthart JF
    Biochemistry; 1997 Apr; 36(15):4480-8. PubMed ID: 9109655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential enzymes of linoleic acid oxidation in corn germ: lipoxygenase and linoleate hydroperoxide isomerase.
    Gardner WH
    J Lipid Res; 1970 Jul; 11(4):311-21. PubMed ID: 5459662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The enzymic and non-enzymic degradation of colneleic acid, an unsaturated fatty acid ether intermediate in the lipoxygenase pathway of linoleic acid oxidation in potato (Solanum tuberosum) tubers.
    Galliard T; Wardale DA; Mathew JA
    Biochem J; 1974 Jan; 138(1):23-31. PubMed ID: 4209994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A pathway for biosynthesis of divinyl ether fatty acids in green leaves.
    Hamberg M
    Lipids; 1998 Nov; 33(11):1061-71. PubMed ID: 9870900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potato tubers exhibit both homolytic and heterolytic hydroperoxide fatty acid-cleaving activities.
    Fauconnier ML; Delcarte J; Hoyaux P; du Jardin P; Marlier M
    Biochem Soc Trans; 2000 Dec; 28(6):853-5. PubMed ID: 11171231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positional specificity of gamma-ketol formation from linoleic acid hydroperoxides by a corn germ enzyme.
    Gardner HW; Kleiman R; Christianson DD; Weisleder D
    Lipids; 1975 Oct; 10(10):602-8. PubMed ID: 1186445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soybean lipoxygenase-1 enzymically forms both (9S)- and (13S)-hydroperoxides from linoleic acid by a pH-dependent mechanism.
    Gardner HW
    Biochim Biophys Acta; 1989 Feb; 1001(3):274-81. PubMed ID: 2492826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic profile of linoleic acid in stored apples: formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid.
    Beuerle T; Schwab W
    Lipids; 1999 Apr; 34(4):375-80. PubMed ID: 10443970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.