These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 6300038)

  • 1. Superoxide anion production and superoxide dismutase and catalase activities in Coxiella burnetii.
    Akporiaye ET; Baca OG
    J Bacteriol; 1983 Apr; 154(1):520-3. PubMed ID: 6300038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An electron spin resonance study of oxyradical generation in superoxide dismutase- and catalase-deficient mutants of Escherichia coli K-12.
    Schellhorn HE; Pou S; Moody C; Hassan HM
    Arch Biochem Biophys; 1989 Jun; 271(2):323-31. PubMed ID: 2543292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes.
    Johnston RB; Keele BB; Misra HP; Lehmeyer JE; Webb LS; Baehner RL; RaJagopalan KV
    J Clin Invest; 1975 Jun; 55(6):1357-72. PubMed ID: 166094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutagenesis in Escherichia coli K-12 mutants defective in superoxide dismutase or catalase.
    Prieto-Alamo MJ; Abril N; Pueyo C
    Carcinogenesis; 1993 Feb; 14(2):237-44. PubMed ID: 8382113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the activity and stability of Mn-superoxide dismutase by one-by-one ligation to catalase.
    Li R; Zhou X; Liu D; Feng W
    Free Radic Biol Med; 2018 Dec; 129():138-145. PubMed ID: 30227270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia coli Hmp, an "oxygen-binding flavohaemoprotein", produces superoxide anion and self-destructs.
    Wu G; Corker H; Orii Y; Poole RK
    Arch Microbiol; 2004 Oct; 182(2-3):193-203. PubMed ID: 15340787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds.
    Hassan HM; Fridovich I
    Arch Biochem Biophys; 1979 Sep; 196(2):385-95. PubMed ID: 225995
    [No Abstract]   [Full Text] [Related]  

  • 8. Coxiella burnetii fails to stimulate human neutrophil superoxide anion production.
    Akporiaye ET; Stefanovich D; Tsosie V; Baca G
    Acta Virol; 1990 Feb; 34(1):64-70. PubMed ID: 1975727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for superoxide dismutase and catalase in mollicutes and release of reactive oxygen species.
    Meier B; Habermehl GG
    Arch Biochem Biophys; 1990 Feb; 277(1):74-9. PubMed ID: 2154957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalase, superoxide dismutase, and the production of O2-sensitive mutants of Bacillus coagulans.
    Vassilyadi M; Archibald F
    Can J Microbiol; 1985 Nov; 31(11):994-9. PubMed ID: 3004685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival of the Q fever agent Coxiella burnetii in the phagolysosome.
    Baca OG; Li YP; Kumar H
    Trends Microbiol; 1994 Dec; 2(12):476-80. PubMed ID: 7889323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between cardiotoxic effect of adriamycin and superoxide anion radical.
    Adachi T; Nagae T; Ito Y; Hirano K; Sugiura M
    J Pharmacobiodyn; 1983 Feb; 6(2):114-23. PubMed ID: 6306200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of the superoxide radical during the peroxidatic oxidation of NADH by catalase at acid pH values.
    Halliwell B
    FEBS Lett; 1977 Aug; 80(2):291-3. PubMed ID: 19298
    [No Abstract]   [Full Text] [Related]  

  • 14. Skin photosensitizing agents and the role of reactive oxygen species in photoaging.
    Dalle Carbonare M; Pathak MA
    J Photochem Photobiol B; 1992 Jun; 14(1-2):105-24. PubMed ID: 1331386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The response of Azotobacter chroococcum to oxygen: superoxide-mediated effects.
    Buchanan AG
    Can J Microbiol; 1977 Nov; 23(11):1548-53. PubMed ID: 200330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The liver-protective enzymes against reduced forms of oxygen in phenobarbital-treated rats.
    Torres M; Järvisalo J; Hakim J
    Enzyme; 1981; 26(3):129-35. PubMed ID: 6265203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superoxide radical and superoxide dismutases: threat and defense.
    Brawn K; Fridovich I
    Acta Physiol Scand Suppl; 1980; 492():9-18. PubMed ID: 6261531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox cycling of resorufin catalyzed by rat liver microsomal NADPH-cytochrome P450 reductase.
    Dutton DR; Reed GA; Parkinson A
    Arch Biochem Biophys; 1989 Feb; 268(2):605-16. PubMed ID: 2464338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On 'Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds' by H. Moustafa Hassan, Irwin Fridovich.
    Hassan HM
    Arch Biochem Biophys; 2022 Sep; 726():109256. PubMed ID: 35477006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of L-ascorbic acid by superoxide dismutase and catalase.
    Miyake N; Kim M; Kurata T
    Biosci Biotechnol Biochem; 1999 Jan; 63(1):54-7. PubMed ID: 10052121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.