BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 6300082)

  • 1. Identification of ubiquinone-50 as the major methylated nonpolar lipid in human monocytes. Regulation of its biosynthesis via methionine-dependent pathways and relationship to superoxide production.
    Bougnoux P; Bonvini E; Stevenson HC; Markey S; Zatz M; Hoffman T
    J Biol Chem; 1983 Apr; 258(7):4339-44. PubMed ID: 6300082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of the oxidative burst in human monocytes is associated with inhibition of methionine-dependent methylation of neutral lipids and phospholipids.
    Bonvini E; Bougnoux P; Stevenson HC; Miller P; Hoffman T
    J Clin Invest; 1984 Jun; 73(6):1629-37. PubMed ID: 6327766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in superoxide production by nonmigrating and migrating human monocyte subpopulations.
    Harvath L; Lazdins JK; Alteri E; Leonard EJ
    Biochem Biophys Res Commun; 1982 Sep; 108(1):392-8. PubMed ID: 6293488
    [No Abstract]   [Full Text] [Related]  

  • 4. Modulation of granulocyte response to the chemoattractant F-Met-Leu-Phe.
    Dahlgren C; Stendahl O
    Adv Exp Med Biol; 1982; 155():107-12. PubMed ID: 6297266
    [No Abstract]   [Full Text] [Related]  

  • 5. The roles of degranulation and superoxide anion generation in neutrophil aggregation.
    Kaplan HB; Edelson HS; Friedman R; Weissmann G
    Biochim Biophys Acta; 1982 Sep; 721(1):55-63. PubMed ID: 6289915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective defect in human neutrophil superoxide anion generation elicited by the chemoattractant N-formylmethionylleucylphenylalanine in pregnancy.
    Cotton DJ; Seligmann B; O'Brien WF; Gallin JI
    J Infect Dis; 1983 Aug; 148(2):194-9. PubMed ID: 6310000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specificity and reversibility of chemotactic deactivation of human monocytes.
    Falk W; Leonard EJ
    Infect Immun; 1981 May; 32(2):464-8. PubMed ID: 6265358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-reactive stimuli selectively increase protein phosphorylation in human neutrophils.
    Schneider C; Zanetti M; Romeo D
    FEBS Lett; 1981 May; 127(1):4-8. PubMed ID: 7250373
    [No Abstract]   [Full Text] [Related]  

  • 9. Differences in the ability of human peripheral blood monocytes and in vitro monocyte-derived macrophages to produce superoxide anion: studies with cells from normals and patients with chronic granulomatous disease.
    Musson RA; McPhail LC; Shafran H; Johnston RB
    J Reticuloendothel Soc; 1982 Mar; 31(3):261-6. PubMed ID: 6281432
    [No Abstract]   [Full Text] [Related]  

  • 10. Methyl ester of N-formylmethionyl-leucyl-phenylalanine: chemotactic responses of human blood monocytes and inhibition of gold compounds.
    Ho PP; Young AL; Southard GL
    Arthritis Rheum; 1978; 21(1):133-6. PubMed ID: 414757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prostaglandin E1 and prostaglandin I2 modulation of superoxide production by human neutrophils.
    Fantone JC; Kinnes DA
    Biochem Biophys Res Commun; 1983 Jun; 113(2):506-12. PubMed ID: 6307290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation by piroxicam of degranulation and superoxide anion generation from decrements in chlortetracycline fluorescence of activated human neutrophils.
    Edelson HS; Kaplan HB; Korchak HM; Smolen JE; Weissmann G
    Biochem Biophys Res Commun; 1982 Jan; 104(1):247-53. PubMed ID: 6280690
    [No Abstract]   [Full Text] [Related]  

  • 13. Phorbol 12-myristate 13-acetate, A23187 and L-adrenaline inhibit phospholipid methylation in human monocytes and lymphocytes. Inhibition is independent of oxyradical production and phospholipid hydrolysis.
    French JK; Hurst NP; Betts WH
    Free Radic Biol Med; 1990; 9(4):271-7. PubMed ID: 2178146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A monoclonal antibody-inhibiting FMLP-induced chemotaxis of human neutrophils.
    Cotter TG; Keeling PJ; Henson PM
    J Immunol; 1981 Dec; 127(6):2241-5. PubMed ID: 7053244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemotactic factor-induced superoxide radical generation by human neutrophils: requirement for proteinase (esterase) activity.
    Simchowitz L; Mehta J; Spilberg I
    J Lab Clin Med; 1979 Sep; 94(3):403-13. PubMed ID: 224122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-formylmethionyl-leucyl-[3H]phenylalanine binding, superoxide release, and chemotactic responses of human blood monocytes that repopulate the circulation during leukapheresis.
    Alteri E; Leonard EJ
    Blood; 1983 Oct; 62(4):918-23. PubMed ID: 6309289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of human monocyte superoxide production by recombinant interleukin-3.
    Jendrossek V; Buth S; Stetter C; Gahr M
    Agents Actions; 1992 Sep; 37(1-2):127-33. PubMed ID: 1333725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes.
    Hirata F; Corcoran BA; Venkatasubramanian K; Schiffmann E; Axelrod J
    Proc Natl Acad Sci U S A; 1979 Jun; 76(6):2640-3. PubMed ID: 288052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horse spleen ferritin inhibits superoxide production by equine blood monocytes in vitro.
    Lipinski P; RetmaĊ„ska H
    Free Radic Biol Med; 1996; 20(5):729-34. PubMed ID: 8721616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of lysosomal enzyme secretion by human U-937 monocytes.
    Leoni P; Dean RT
    Exp Cell Biol; 1983; 51(3):148-57. PubMed ID: 6852343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.