These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 6300087)
1. Nucleotide triphosphate utilization by cardiac and skeletal muscle sarcoplasmic reticulum. Further evidence for an alternative substrate hydrolysis cycle and the effect of calcium NTPase purification. Bick RJ; Van Winkle WB; Tate CA; Entman ML J Biol Chem; 1983 Apr; 258(7):4447-52. PubMed ID: 6300087 [TBL] [Abstract][Full Text] [Related]
3. Nucleotide specificity of cardiac sarcoplasmic reticulum. GTP-induced calcium accumulation and GTPase activity. Tate CA; Bick RJ; Chu A; Van Winkle WB; Entman ML J Biol Chem; 1985 Aug; 260(17):9618-23. PubMed ID: 2991255 [TBL] [Abstract][Full Text] [Related]
4. Nucleotide specificity of cardiac sarcoplasmic reticulum. Inhibition of GTPase activity by ATP analogue in fluorescein isothiocyanate-modified calcium ATPase. Tate CA; Shin G; Walseth TF; Taffet GE; Bick RJ; Entman ML J Biol Chem; 1991 Aug; 266(24):16165-70. PubMed ID: 1831455 [TBL] [Abstract][Full Text] [Related]
5. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation. Hawkins C; Xu A; Narayanan N Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909 [TBL] [Abstract][Full Text] [Related]
6. Gingerol, a novel cardiotonic agent, activates the Ca2+-pumping ATPase in skeletal and cardiac sarcoplasmic reticulum. Kobayashi M; Shoji N; Ohizumi Y Biochim Biophys Acta; 1987 Sep; 903(1):96-102. PubMed ID: 2443170 [TBL] [Abstract][Full Text] [Related]
7. Anion effects on in vitro sarcoplasmic reticulum function. Co-transport of anions with calcium. Chu A; Bick RJ; Tate CA; Van Winkle WB; Entman ML J Biol Chem; 1983 Sep; 258(17):10543-50. PubMed ID: 6224790 [TBL] [Abstract][Full Text] [Related]
8. Relationship between phospholamban and nucleotide activation of cardiac sarcoplasmic reticulum Ca2+ adenosinetriphosphatase. Coll KE; Johnson RG; McKenna E Biochemistry; 1999 Feb; 38(8):2444-51. PubMed ID: 10029538 [TBL] [Abstract][Full Text] [Related]
9. Intermolecular conformational coupling and free energy exchange enhance the catalytic efficiency of cardiac muscle SERCA2a following the relief of phospholamban inhibition. Mahaney JE; Albers RW; Waggoner JR; Kutchai HC; Froehlich JP Biochemistry; 2005 May; 44(21):7713-24. PubMed ID: 15909986 [TBL] [Abstract][Full Text] [Related]
11. Properties and characterization of a highly purified sarcoplasmic reticulum Ca2+-ATPase from dog cardiac and rabbit skeletal muscle. Nakamura J; Wang T; Tsai LI; Schwartz A J Biol Chem; 1983 Apr; 258(8):5079-83. PubMed ID: 6220013 [TBL] [Abstract][Full Text] [Related]
12. Rapid purification of canine cardiac sarcoplasmic reticulum Ca2+-ATPase. Van Winkle WB; Pitts BJ; Entman ML J Biol Chem; 1978 Dec; 253(24):8671-3. PubMed ID: 152759 [TBL] [Abstract][Full Text] [Related]
13. Calcium transport by sarcoplasmic reticulum of skeletal muscle is inhibited by antibodies against the 53-kilodalton glycoprotein of the sarcoplasmic reticulum membrane. Kutchai H; Campbell KP Biochemistry; 1989 May; 28(11):4830-9. PubMed ID: 2527558 [TBL] [Abstract][Full Text] [Related]
14. Proton inactivation of Ca2+ transport by sarcoplasmic reticulum. Berman MC; McIntosh DB; Kench JE J Biol Chem; 1977 Feb; 252(3):994-1001. PubMed ID: 14142 [TBL] [Abstract][Full Text] [Related]
16. Sarcoplasmic reticulum Ca-ATPase: distinction of phosphoenzymes formed from MgATP and CaATP as substrates and interconversion of the phosphoenzymes by Mg2+ and Ca2+. Yamada S; Fujii J; Katayama H J Biochem; 1986 Nov; 100(5):1329-42. PubMed ID: 2950082 [TBL] [Abstract][Full Text] [Related]
17. Coupling of calcium transport with ATP hydrolysis in scallop sarcoplasmic reticulum. Matsuo N; Nagata Y; Nakamura J; Yamamoto T J Biochem; 2002 Mar; 131(3):375-81. PubMed ID: 11872166 [TBL] [Abstract][Full Text] [Related]
18. Comparison of ATP-dependent calcium transport and calcium-activated ATPase activities of cardiac sarcoplasmic reticulum and sarcolemma from rats of various ages. Narayanan N Mech Ageing Dev; 1987 Apr; 38(2):127-43. PubMed ID: 2955175 [TBL] [Abstract][Full Text] [Related]
19. Reversible inhibition of the calcium-pumping ATPase in native cardiac sarcoplasmic reticulum by a calmodulin-binding peptide. Evidence for calmodulin-dependent regulation of the V(max) of calcium transport. Xu A; Narayanan N J Biol Chem; 2000 Feb; 275(6):4407-16. PubMed ID: 10660612 [TBL] [Abstract][Full Text] [Related]
20. Coupling of Ca2+ transport to ATP hydrolysis by the Ca2+-ATPase of sarcoplasmic reticulum: potential role of the 53-kilodalton glycoprotein. Leonards KS; Kutchai H Biochemistry; 1985 Aug; 24(18):4876-84. PubMed ID: 2934086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]