These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 6300649)

  • 1. Regulation of Ca2+-dependent cyclic AMP accumulation and Ca2+ metabolism in intact pituitary tumor cells by modulators of prolactin production.
    Brostrom MA; Brostrom CO; Brotman LA; Green SS
    Mol Pharmacol; 1983 Mar; 23(2):399-408. PubMed ID: 6300649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca2+ and hormones interact synergistically to stimulate rapidly both prolactin production and overall protein synthesis in pituitary tumor cells.
    Brostrom MA; Brostrom CO; Bocckino SB; Green SS
    J Cell Physiol; 1984 Nov; 121(2):391-401. PubMed ID: 6436256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential involvement of protein kinase C in basal versus acetylcholine-regulated prolactin secretion in rat anterior pituitary cells during aging.
    Pu HF; Liu TC
    J Cell Biochem; 2002; 86(2):268-76. PubMed ID: 12111996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A possible role of cyclic AMP in mediating the effects of thyrotropin-releasing hormone on prolactin release and on prolactin and growth hormone synthesis in pituitary cells in culture.
    Dannies PS; Gautvik KM; Tashjian AH
    Endocrinology; 1976 May; 98(5):1147-59. PubMed ID: 177274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thyrotropin-releasing hormone and epidermal growth factor stimulate prolactin synthesis by a pathway(s) that differs from that used by phorbol esters: dissociation of actions by calcium dependency and additivity.
    Ramsdell JS; Tashjian AH
    Endocrinology; 1985 Nov; 117(5):2050-60. PubMed ID: 3930223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunocytochemical analysis of prolactin production by monolayer cultures of GH3 rat anterior pituitary tumor cells: II. Variation in prolactin content of individual cell colonies, and dynamics of stimulation with thyrotropin-releasing hormone (TRH).
    Hoyt RF; Tashjian AH
    Anat Rec; 1980 Jun; 197(2):163-81. PubMed ID: 6774631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunocytochemical analysis of prolactin production by monolayer cultures of GH3 rat anterior pituitary tumor cells: I. Long-term effects of stimulation with thyrotropin-releasing hormone (TRH).
    Hoyt RF; Tashjian AH
    Anat Rec; 1980 Jun; 197(2):153-62. PubMed ID: 6774630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In GH3 pituitary cells, acetylcholine and vasoactive intestinal peptide antagonistically modulate adenylate cyclase, cyclic AMP content, and prolactin secretion.
    Onali P; Eva C; Olianas MC; Schwartz JP; Costa E
    Mol Pharmacol; 1983 Sep; 24(2):189-94. PubMed ID: 6310360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pertussis toxin actions on the pituitary-derived 235-1 clone: effects of PGE1, cholera toxin, and forskolin on cyclic AMP metabolism and prolactin release.
    Cronin MJ; Myers GA; MacLeod RM; Hewlett EL
    J Cyclic Nucleotide Protein Phosphor Res; 1983; 9(3):245-58. PubMed ID: 6199389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of protein kinase C in the UTP-mediated potentiation of cyclic AMP accumulation in mouse J774 macrophages.
    Lin WW; Chen BC
    Br J Pharmacol; 1997 Aug; 121(8):1749-57. PubMed ID: 9283713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulatory effect of pituitary adenylate-cyclase activating polypeptide (PACAP) and its PACAP type I receptor (PAC1R) on prolactin synthesis in rat pituitary somatolactotroph GH3 cells.
    Mijiddorj T; Kanasaki H; Purwana IN; Oride A; Miyazaki K
    Mol Cell Endocrinol; 2011 Jun; 339(1-2):172-9. PubMed ID: 21539889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine 3',5'-cyclic monophosphate-dependent release of prolactin from GH3 pituitary tumour cells. A quantitative analysis.
    Guild S; Drummond AH
    Biochem J; 1983 Dec; 216(3):551-7. PubMed ID: 6199014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of thyroliberin (TRH) on cell proliferation and prolactin secretion by GH3/B6 rat pituitary cells: a comparison between serum-free and serum-supplemented media.
    Brunet N; Rizzino A; Gourdji D; Tixier-Vidal A
    J Cell Physiol; 1981 Nov; 109(2):363-72. PubMed ID: 6795214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ inhibition of beta-adrenergic receptor- and forskolin-stimulated cAMP accumulation in C6-2B rat glioma cells is independent of protein kinase C.
    Debernardi MA; Munshi R; Brooker G
    Mol Pharmacol; 1993 Mar; 43(3):451-8. PubMed ID: 8383803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PGE1-independent MDCK cells have elevated intracellular cyclic AMP but retain the growth stimulatory effects of glucagon and epidermal growth factor in serum-free medium.
    Taub M; Devis PE; Grohol SH
    J Cell Physiol; 1984 Jul; 120(1):19-28. PubMed ID: 6203919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of thyrotropin-releasing hormone, vasoactive intestinal peptide, phorbol ester, and depolarization in GH4C1 rat pituitary cells.
    Aizawa T; Hinkle PM
    Endocrinology; 1985 Mar; 116(3):909-19. PubMed ID: 3918848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-Hydroxytryptamine type 2A receptors regulate cyclic AMP accumulation in a neuronal cell line by protein kinase C-dependent and calcium/calmodulin-dependent mechanisms.
    Berg KA; Clarke WP; Chen Y; Ebersole BJ; McKay RD; Maayani S
    Mol Pharmacol; 1994 May; 45(5):826-36. PubMed ID: 8190100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevation of intracellular calcium ion by prostaglandin E1 and its inhibition by protein kinase C in a human megakaryocyte leukemia cell line.
    Adachi M; Ryo R; Yoshida A; Teshigawara K; Yamaguchi N; Hoshijima M; Takai Y; Sato T
    Cancer Res; 1989 Jul; 49(14):3805-8. PubMed ID: 2736522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Muscarinic cholinergic receptors in mouse pituitary tumor cells: prolonged agonist pretreatment decreases receptor content and increases forskolin- and hormone-stimulated cyclic AMP synthesis and adrenocorticotropin secretion.
    Heisler S; Desjardins D; Nguyen MH
    J Pharmacol Exp Ther; 1985 Jan; 232(1):232-8. PubMed ID: 2981317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Follistatin, induced by thyrotropin-releasing hormone (TRH), plays no role in prolactin expression but affects gonadotropin FSHbeta expression as a paracrine factor in pituitary somatolactotroph GH3 cells.
    Oride A; Kanasaki H; Purwana IN; Mutiara S; Miyazaki K
    Regul Pept; 2009 Aug; 156(1-3):65-71. PubMed ID: 19446581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.