These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 6300893)

  • 1. Action potentials and membrane ion channels in clonal anterior pituitary cells.
    Adler M; Wong BS; Sabol SL; Busis N; Jackson MB; Weight FF
    Proc Natl Acad Sci U S A; 1983 Apr; 80(7):2086-90. PubMed ID: 6300893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular calcium and hormone secretion in clonal AtT-20/D16-16 anterior pituitary cells.
    Adler M; Sabol SL; Busis N; Pant HC
    Cell Calcium; 1989 Oct; 10(7):467-76. PubMed ID: 2575458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inward membrane currents and electrophysiological responses to GnRH in ovine gonadotropes.
    Heyward PM; Chen C; Clarke IJ
    Neuroendocrinology; 1995 Jun; 61(6):609-21. PubMed ID: 7544876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of action potentials and Ca2+ influx by the Ca(2+)-dependent chloride current in mouse pituitary cells.
    Korn SJ; Bolden A; Horn R
    J Physiol; 1991 Aug; 439():423-37. PubMed ID: 1654415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single calcium-dependent potassium channels in clonal anterior pituitary cells.
    Wong BS; Lecar H; Adler M
    Biophys J; 1982 Sep; 39(3):313-7. PubMed ID: 6291655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Norepinephrine selectively reduces slow Ca2+- and Na+-mediated K+ currents in cat neocortical neurons.
    Foehring RC; Schwindt PC; Crill WE
    J Neurophysiol; 1989 Feb; 61(2):245-56. PubMed ID: 2918353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-activated ionic currents in goldfish pituitary cells.
    Price CJ; Goldberg JI; Chang JP
    Gen Comp Endocrinol; 1993 Oct; 92(1):16-30. PubMed ID: 7505247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ.
    Rothe T; Jüttner R; Bähring R; Grantyn R
    J Neurobiol; 1999 Feb; 38(2):191-206. PubMed ID: 10022566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatostatin blocks Ca2+ action potential activity in prolactin-secreting pituitary tumor cells through coordinate actions on K+ and Ca2+ conductances.
    Mollard P; Vacher P; Dufy B; Barker JL
    Endocrinology; 1988 Aug; 123(2):721-32. PubMed ID: 2456203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):375-400. PubMed ID: 7512629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iberiotoxin-sensitive large conductance Ca2+ -dependent K+ (BK) channels regulate the spike configuration in the burst firing of cerebellar Purkinje neurons.
    Haghdoost-Yazdi H; Janahmadi M; Behzadi G
    Brain Res; 2008 May; 1212():1-8. PubMed ID: 18439989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of secretion in anterior pituitary cells--linking ion channels, messengers and exocytosis.
    Mason WT; Rawlings SR; Cobbett P; Sikdar SK; Zorec R; Akerman SN; Benham CD; Berridge MJ; Cheek T; Moreton RB
    J Exp Biol; 1988 Sep; 139():287-316. PubMed ID: 2463327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium conductances and their role in the firing behavior of neonatal rat hypoglossal motoneurons.
    Viana F; Bayliss DA; Berger AJ
    J Neurophysiol; 1993 Jun; 69(6):2137-49. PubMed ID: 8394413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the bursting properties of single mouse pancreatic beta-cells by artificial conductances.
    Kinard TA; de Vries G; Sherman A; Satin LS
    Biophys J; 1999 Mar; 76(3):1423-35. PubMed ID: 10049324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual modulation of K channels by thyrotropin-releasing hormone in clonal pituitary cells.
    Dubinsky JM; Oxford GS
    Proc Natl Acad Sci U S A; 1985 Jun; 82(12):4282-6. PubMed ID: 2408278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of a nonspecific cation conductance by intracellular Ca2+ elevation in bursting pacemaker neurons of Helix pomatia.
    Swandulla D; Lux HD
    J Neurophysiol; 1985 Dec; 54(6):1430-43. PubMed ID: 2418170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patch-clamp study of the calcium-dependent chloride current in AtT-20 pituitary cells.
    Korn SJ; Weight FF
    J Neurophysiol; 1987 Dec; 58(6):1431-51. PubMed ID: 2449518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The leaner P/Q-type calcium channel mutation renders cerebellar Purkinje neurons hyper-excitable and eliminates Ca2+-Na+ spike bursts.
    Ovsepian SV; Friel DD
    Eur J Neurosci; 2008 Jan; 27(1):93-103. PubMed ID: 18093175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticotropin-releasing hormone stimulates Ca2+ entry through L- and P-type Ca2+ channels in rat corticotropes.
    Kuryshev YA; Childs GV; Ritchie AK
    Endocrinology; 1996 Jun; 137(6):2269-77. PubMed ID: 8641175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.