These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6301377)

  • 21. Genetic and biochemical resolution of the chromophoric polypeptide of halorhodopsin.
    Spudich EN; Bogomolni RA; Spudich JL
    Biochem Biophys Res Commun; 1983 Apr; 112(1):332-8. PubMed ID: 6838616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Proton circulation during the photocycle of sensory rhodopsin II.
    Sasaki J; Spudich JL
    Biophys J; 1999 Oct; 77(4):2145-52. PubMed ID: 10512834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification of photochemically active halorhodopsin.
    Taylor ME; Bogomolni RA; Weber HJ
    Proc Natl Acad Sci U S A; 1983 Oct; 80(20):6172-6. PubMed ID: 6578502
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transient proton inflows during illumination of anaerobic Halobacterium halobium cells.
    Helgerson SL; Stoeckenius W
    Arch Biochem Biophys; 1985 Sep; 241(2):616-27. PubMed ID: 2994571
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-induced pH changes inside bacteriorhodopsin vesicles as measured by 31 P NMR.
    Blok MC; Hellingwerf KJ; Kaptein R; de Kruijff B
    Biochim Biophys Acta; 1978 Dec; 514(1):178-84. PubMed ID: 31176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial rhodopsins monitored with fluorescent dyes in vesicles and in vivo.
    Ehrlich BE; Schen CR; Spudich JL
    J Membr Biol; 1984; 82(1):89-94. PubMed ID: 6502700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Spectral transformations in purple membranes of Halobacterium halobium: effect of 560-570 transition and blue light on photochemical processes].
    Vsevolodov NN; Chekulaeva LN
    Biofizika; 1978; 23(6):1019-23. PubMed ID: 719015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the azide-dependent bacteriorhodopsin-like photocycle of salinarum halorhodopsin.
    Lakatos M; Groma GI; Ganea C; Lanyi JK; Váró G
    Biophys J; 2002 Apr; 82(4):1687-95. PubMed ID: 11916830
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Light-induced membrane-potential increase, ATP synthesis, and proton uptake in Halobacterium halobium, R1mR catalyzed by halorhodopsin: Effects of N,N'-dicyclohexylcarbodiimide, triphenyltin chloride, and 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF6847).
    Mukohata Y; Kaji Y
    Arch Biochem Biophys; 1981 Jan; 206(1):72-6. PubMed ID: 6260033
    [No Abstract]   [Full Text] [Related]  

  • 30. Surface charge changes in purple membranes and the photoreaction cycle of bacteriorhodopsin.
    Carmeli C; Quintanilha AT; Packer L
    Proc Natl Acad Sci U S A; 1980 Aug; 77(8):4707-11. PubMed ID: 6254038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics and stoichiometry of light-induced proton release and uptake from purple membrane fragments, Halobacterium halobium cell envelopes, and phospholipid vesicles containing oriented purple membrane.
    Lozier RH; Niederberger W; Bogomolni RA; Hwang S; Stoeckenius W
    Biochim Biophys Acta; 1976 Sep; 440(3):545-56. PubMed ID: 963044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A correlation between proton pumping and the bacteriorhodopsin photocycle.
    Li Q; Govindjee R; Ebrey TG
    Proc Natl Acad Sci U S A; 1984 Nov; 81(22):7079-82. PubMed ID: 6095267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoacoustic photocalorimetry and spectroscopy of Halobacterium halobium purple membranes.
    Garty H; Caplan SR; Cahen D
    Biophys J; 1982 Feb; 37(2):405-15. PubMed ID: 7059648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fourier transform infrared study of the halorhodopsin chloride pump.
    Rothschild KJ; Bousché O; Braiman MS; Hasselbacher CA; Spudich JL
    Biochemistry; 1988 Apr; 27(7):2420-4. PubMed ID: 3382631
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proton transport by halorhodopsin.
    Váró G; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1996 May; 35(21):6604-11. PubMed ID: 8639608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Nature of the electrogenic phases of the bacteriorhodopsin photocycle and the localization of retinal].
    Drachev LA; Kaulen AD; Skulachev VP
    Dokl Akad Nauk SSSR; 1985; 281(1):176-80. PubMed ID: 2986925
    [No Abstract]   [Full Text] [Related]  

  • 37. Spin-labeling studies of the conformational changes in the vicinity of D36, D38, T46, and E161 of bacteriorhodopsin during the photocycle.
    Rink T; Riesle J; Oesterhelt D; Gerwert K; Steinhoff HJ
    Biophys J; 1997 Aug; 73(2):983-93. PubMed ID: 9251815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical and spectroscopic characterization of the blue-green photoreceptor in Halobacterium halobium.
    Scherrer P; McGinnis K; Bogomolni RA
    Proc Natl Acad Sci U S A; 1987 Jan; 84(2):402-6. PubMed ID: 3467364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acid-base equilibrium of the Schiff base in bacteriorhodopsin.
    Druckmann S; Ottolenghi M; Pande A; Pande J; Callender RH
    Biochemistry; 1982 Sep; 21(20):4953-9. PubMed ID: 7138840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transient spectroscopy of bacterial rhodopsins with an optical multichannel analyzer. 1. Comparison of the photocycles of bacteriorhodopsin and halorhodopsin.
    Zimányi L; Keszthelyi L; Lanyi JK
    Biochemistry; 1989 Jun; 28(12):5165-72. PubMed ID: 2765529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.