These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 6301419)

  • 1. Cross-tolerance between two brainstem sites supporting stimulation-produced analgesia.
    Thorn-Gray BE; Johnson MH; Ashbrook RM
    Behav Neural Biol; 1982 Sep; 36(1):69-76. PubMed ID: 6301419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Associative factors in tolerance to analgesia produced by electrical stimulation in the brainstem.
    Paul D; Phillips AG
    Behav Neurosci; 1990 Feb; 104(1):207-16. PubMed ID: 2156521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N. raphe magnus lesions disrupt stimulation-produced analgesia from ventral but not dorsal midbrain areas in the rat.
    Prieto GJ; Cannon JT; Liebeskind JC
    Brain Res; 1983 Feb; 261(1):53-7. PubMed ID: 6301628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site specificity in the development of tolerance to stimulation-produced analgesia from the periaqueductal gray matter of the rat.
    Morgan MM; Liebeskind JC
    Brain Res; 1987 Nov; 425(2):356-9. PubMed ID: 3427436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of shock elicited target biting by analgesic midbrain stimulation.
    Renfrew JW; Leroy JA
    Physiol Behav; 1983 Jan; 30(1):169-72. PubMed ID: 6682236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between analgesia and cardiovascular changes induced by electrical stimulation of the mesencephalic periaqueductal gray matter in the rat.
    Depaulis A; Pechnick RN; Liebeskind JC
    Brain Res; 1988 Jun; 451(1-2):326-32. PubMed ID: 3251592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Periventricular system lesions and stimulation-produced analgesia.
    Rhodes DL
    Pain; 1979 Aug; 7(1):51-63. PubMed ID: 503554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Focal brain stimulation attenuates morphine withdrawal behaviors.
    Beaulieu CL; Thorn BE
    Behav Neurosci; 1986 Aug; 100(4):504-11. PubMed ID: 3017375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analgesia from rostral brain stem stimulation in the rat.
    Rhodes DL; Liebeskind JC
    Brain Res; 1978 Mar; 143(3):521-32. PubMed ID: 647376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of the substrates for analgesia and vocalizations elicited by midbrain stimulation in rats: refractory period estimates.
    Schenk S; Robinson B
    Behav Brain Res; 1988 Dec; 31(2):105-10. PubMed ID: 3202942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat.
    Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M
    J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons.
    Dostrovsky JO; Shah Y; Gray BG
    J Neurophysiol; 1983 Apr; 49(4):948-60. PubMed ID: 6854363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and nonnociceptive neurons.
    Gray BG; Dostrovsky JO
    J Neurophysiol; 1983 Apr; 49(4):932-47. PubMed ID: 6854362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for the involvement of serotonin in the antinociception induced by electrical or chemical stimulation of the mesencephalic tectum.
    Coimbra NC; Tomaz C; Brandão ML
    Behav Brain Res; 1992 Sep; 50(1-2):77-83. PubMed ID: 1333224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative contributions of the nucleus raphe magnus and adjacent medullary reticular formation to the inhibition by stimulation in the periaqueductal gray of a spinal nociceptive reflex in the pentobarbital-anesthetized rat.
    Sandkühler J; Gebhart GF
    Brain Res; 1984 Jul; 305(1):77-87. PubMed ID: 6744063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral and physiological studies of non-narcotic analgesia in the rat elicited by certain environmental stimuli.
    Hayes RL; Bennett GJ; Newlon PG; Mayer DJ
    Brain Res; 1978 Oct; 155(1):69-90. PubMed ID: 688016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of spinal nociceptive neurons by excitation of cell bodies or fibers of passage at various brainstem sites in the cat.
    Sandkühler J; Helmchen C; Fu QG; Zimmermann M
    Neurosci Lett; 1988 Oct; 93(1):67-72. PubMed ID: 2905438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade by naltrexone of analgesia produced by stimulation of the dorsal raphe nucleus.
    Swajkoski AR; Mayer DJ; Johnson JH
    Pharmacol Biochem Behav; 1981 Sep; 15(3):419-23. PubMed ID: 7291246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analgesia elicited by prefrontal stimulation.
    Hardy SG
    Brain Res; 1985 Jul; 339(2):281-4. PubMed ID: 4027626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of the 'tolerance' which develops to analgetic electrical stimulation of the midbrain periaqueductal grey in freely moving rats.
    Millan MJ; Członkowski A; Herz A
    Brain Res; 1987 Dec; 435(1-2):97-111. PubMed ID: 3427472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.