BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 6301443)

  • 1. Leukotriene B4, C4, D4 and E4 inactivation by hydroxyl radicals.
    Henderson WR; Klebanoff SJ
    Biochem Biophys Res Commun; 1983 Jan; 110(1):266-72. PubMed ID: 6301443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leukotrienes.
    Hammarström S
    Annu Rev Biochem; 1983; 52():355-77. PubMed ID: 6311078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemiluminescence from acetaldehyde oxidation by xanthine oxidase involves generation of and interactions with hydroxyl radicals.
    Puntarulo S; Cederbaum AI
    Alcohol Clin Exp Res; 1989 Feb; 13(1):84-90. PubMed ID: 2538093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin.
    Bannister JV; Bannister WH; Hill HA; Thornalley PJ
    Biochim Biophys Acta; 1982 Mar; 715(1):116-20. PubMed ID: 6280774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of the uptake of cysteine-containing leukotrienes by isolated hepatocytes.
    Uehara N; Ormstad K; Orning L; Hammarström S
    Biochim Biophys Acta; 1983 Jul; 732(1):69-74. PubMed ID: 6307367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The myeloperoxidase-dependent metabolism of leukotrienes C4, D4, and E4 to 6-trans-leukotriene B4 diastereoisomers and the subclass-specific S-diastereoisomeric sulfoxides.
    Lee CW; Lewis RA; Tauber AI; Mehrotra M; Corey EJ; Austen KF
    J Biol Chem; 1983 Dec; 258(24):15004-10. PubMed ID: 6317683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of leukotrienes.
    Hammarström S; Orning L; Bernström K
    Mol Cell Biochem; 1985 Nov; 69(1):7-16. PubMed ID: 3001504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis of the Haber-Weiss reaction by iron-diethylenetriaminepentaacetate.
    Egan TJ; Barthakur SR; Aisen P
    J Inorg Biochem; 1992 Dec; 48(4):241-9. PubMed ID: 1336036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halothane metabolism. Impairment of hepatic omega-oxidation of leukotrienes in vivo and in vitro.
    Huwyler J; Jedlitschky G; Keppler D; Gut J
    Eur J Biochem; 1992 Jun; 206(3):869-79. PubMed ID: 1318837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in the formation and metabolism of leukotrienes B4 and C4 in the human lung.
    Kumlin M; Dahlén SE; Granström E
    Adv Prostaglandin Thromboxane Leukot Res; 1987; 17B():1018-22. PubMed ID: 2823552
    [No Abstract]   [Full Text] [Related]  

  • 11. Metabolism of leukotrienes B4 and C4 in the isolated perfused rat lung.
    Harper TW; Westcott JY; Voelkel N; Murphy RC
    J Biol Chem; 1984 Dec; 259(23):14437-40. PubMed ID: 6094557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Pharmacology of the leukotrienes].
    Sirois P; Borgeat P
    J Pharmacol; 1984; 15 Suppl 1():53-68. PubMed ID: 6328128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the actions of leukotriene E4 with those of leukotrienes B4, C4, and D4 on guinea pig lung and ileal smooth muscle in vitro.
    Piper PJ; Samhoun MN
    Adv Prostaglandin Thromboxane Leukot Res; 1983; 12():127-31. PubMed ID: 6303079
    [No Abstract]   [Full Text] [Related]  

  • 14. Effect of the serine-borate complex on the relative ability of leukotriene C4, D4 and E4 to inhibit lung and brain [3H] leukotriene D4 and [3H] leukotriene C4 binding: demonstration of the agonists' potency order for leukotriene D4 and leukotriene C4 receptors.
    Cheng JB; Townley RG
    Biochem Biophys Res Commun; 1984 Mar; 119(2):612-7. PubMed ID: 6324769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superoxide-dependent formation of hydroxyl radical catalyzed by transferrin.
    Motohashi N; Mori I
    FEBS Lett; 1983 Jun; 157(1):197-9. PubMed ID: 6305716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leukotriene production and inactivation by normal, chronic granulomatous disease and myeloperoxidase-deficient neutrophils.
    Henderson WR; Klebanoff SJ
    J Biol Chem; 1983 Nov; 258(22):13522-7. PubMed ID: 6315700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a similar receptor site for binding of [3H] leukotriene E4 and [3H] leukotriene D4 to the guinea-pig crude lung membrane.
    Cheng JB; Townley RG
    Biochem Biophys Res Commun; 1984 Aug; 122(3):949-54. PubMed ID: 6089786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of leukotrienes from human granulocytes by alveolysin from Bacillus alvei.
    Bremm KD; Brom HJ; Alouf JE; König W; Spur B; Crea A; Peters W
    Infect Immun; 1984 Apr; 44(1):188-93. PubMed ID: 6323315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of mitochondrial adenosine triphosphatase from Trypanosoma cruzi by oxygen radicals.
    Cataldi de Flombaum MA; Stoppani AO
    Biochem Int; 1986 Jun; 12(6):785-93. PubMed ID: 3017349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cardiac actions of leukotrienes B4, C4, D4, and E4 in guinea pig and rat in vitro.
    Letts LG; Piper PJ
    Adv Prostaglandin Thromboxane Leukot Res; 1983; 11():391-5. PubMed ID: 6303075
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.