BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6301472)

  • 1. Defective phospholipid metabolism in the retinular cell membrane of norpA (no receptor potential) visual transduction mutants of Drosophila.
    Yoshioka T; Inoue H; Hotta Y
    Biochem Biophys Res Commun; 1983 Mar; 111(2):567-73. PubMed ID: 6301472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absence of diglyceride kinase activity in the photoreceptor cells of Drosophila mutants.
    Yoshioka T; Inoue H; Hotta Y
    Biochem Biophys Res Commun; 1984 Feb; 119(1):389-95. PubMed ID: 6322785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phospholipids in Drosophila heads: effects of visual mutants and phototransduction manipulations.
    Stark WS; Lin TN; Brackhahn D; Christianson JS; Sun GY
    Lipids; 1993 Jan; 28(1):23-8. PubMed ID: 8446007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunocytochemical studies on light-induced changes in phosphatidylinositol 4,5-bisphosphate immunoreactivity in the visual system of normal and norpA mutant of Drosophila.
    Suzuki E; Hirosawa K
    Neurosci Res; 1992 Mar; 13(2):155-60. PubMed ID: 1316594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of phosphatidylinositol phosphodiesterase in the head of a Drosophila visual mutant, norpA (no receptor potential A).
    Yoshioka T; Inoue H; Hotta Y
    J Biochem; 1985 Apr; 97(4):1251-4. PubMed ID: 2993262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced pigment granule migration in the retinular cells of Drosophila melanogaster. Comparison of wild type with ERG-defective mutants.
    Lo MV; Pak WL
    J Gen Physiol; 1981 Feb; 77(2):155-75. PubMed ID: 6790662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genetic study of inositol trisphosphate involvement in phototransduction using Drosophila mutants.
    Inoue H; Yoshioka T; Hotta Y
    Biochem Biophys Res Commun; 1985 Oct; 132(2):513-9. PubMed ID: 2998372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipase C rescues visual defect in norpA mutant of Drosophila melanogaster.
    McKay RR; Chen DM; Miller K; Kim S; Stark WS; Shortridge RD
    J Biol Chem; 1995 Jun; 270(22):13271-6. PubMed ID: 7768926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties of photoreceptor-specific phospholipase C encoded by the norpA gene of Drosophila melanogaster.
    Schneuwly S; Burg MG; Lending C; Perdew MH; Pak WL
    J Biol Chem; 1991 Dec; 266(36):24314-9. PubMed ID: 1662208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular, biochemical, and electrophysiological characterization of Drosophila norpA mutants.
    Pearn MT; Randall LL; Shortridge RD; Burg MG; Pak WL
    J Biol Chem; 1996 Mar; 271(9):4937-45. PubMed ID: 8617767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of retinular cells in a Drosophila melanogaster visual mutant, rdgA, at early stages of degeneration.
    Matsumoto E; Hirosawa K; Takagawa K; Hotta Y
    Cell Tissue Res; 1988 May; 252(2):293-300. PubMed ID: 3133115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction.
    Bloomquist BT; Shortridge RD; Schneuwly S; Perdew M; Montell C; Steller H; Rubin G; Pak WL
    Cell; 1988 Aug; 54(5):723-33. PubMed ID: 2457447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-mediated breakdown of phosphatidylinositol-4,5-bisphosphate in isolated rod outer segments of frog photoreceptor.
    Hayashi F; Amakawa T
    Biochem Biophys Res Commun; 1985 Apr; 128(2):954-9. PubMed ID: 2986631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipids of Trypanosoma cruzi: increase of polyphosphoinositides and phosphatidic acid after cholinergic stimulation.
    Machado de Domenech EE; García M; Garrido MN; Racagni G
    FEMS Microbiol Lett; 1992 Aug; 74(2-3):267-70. PubMed ID: 1326469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain phosphatidic acid and polyphosphoinositide formation in a broken cell preparation: regional distribution and the effect of age.
    Bothmer J; Markerink M; Jolles J
    Neurochem Int; 1992 Sep; 21(2):223-8. PubMed ID: 1338899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cationic amphiphilic drugs perturb the metabolism of inosititides and phosphatidic acid in photoreceptor membranes.
    Van Rooijen LA; Bazan NG
    Biochem Biophys Res Commun; 1986 Jan; 134(1):378-85. PubMed ID: 3004440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyphosphoinositide synthesis and protein phosphorylation in the plasma membrane from full-grown Bufo arenarum oocytes.
    Alonso TS; Bonini de Romanelli IC; Roccamo de Fernández AM; Barrantes FJ
    Comp Biochem Physiol B; 1992 Jul; 102(3):585-90. PubMed ID: 1323443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoreceptor maintenance and degeneration in the norpA (no receptor potential-A) mutant of Drosophila melanogaster.
    Stark WS; Sapp R; Carlson SD
    J Neurogenet; 1989 Jan; 5(1):49-59. PubMed ID: 2495345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hereditary retinal degeneration in Drosophila melanogaster. A mutant defect associated with the phototransduction process.
    Harris WA; Stark WS
    J Gen Physiol; 1977 Mar; 69(3):261-91. PubMed ID: 139462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. THE INCORPORATION OF 32P FROM TRIPHOSPHATE INTO POLYPHOSPHOINOSITIDES (GAMMA-32P)ADENOSINE AND PHOSPHATIDIC ACID IN ERYTHROCYTE MEMBRANES.
    HOKIN LE; HOKIN MR
    Biochim Biophys Acta; 1964 Oct; 84():563-75. PubMed ID: 14250494
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.