These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 6301833)

  • 1. Characterisation of membrane vesicles from Paracoccus denitrificans and measurements of the effect of partial uncoupling on their thermodynamics of oxidative phosphorylation.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):417-24. PubMed ID: 6301833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase.
    McCarthy JE; Ferguson SJ
    Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The protonmotive force in phosphorylating membrane vesicles from Paracoccus denitrificans. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Kell DB; John P; Ferguson SJ
    Biochem J; 1978 Jul; 174(1):257-66. PubMed ID: 212022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of temperature and chronic ethanol feeding on the proton electrochemical potential and phosphate potential in rat liver mitochondria.
    Rottenberg H; Robertson DE; Rubin E
    Biochim Biophys Acta; 1985 Aug; 809(1):1-10. PubMed ID: 2862912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.
    Carr GJ; Page MD; Ferguson SJ
    Eur J Biochem; 1989 Feb; 179(3):683-92. PubMed ID: 2920732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Sorgato MC; Ferguson SJ; Kell DB; John P
    Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative phosphorylation and respiratory control phenomenon in Paracoccus denitrificans plasma membrane.
    Zharova TV; Vinogradov AD
    Biochemistry (Mosc); 2012 Sep; 77(9):1000-7. PubMed ID: 23157259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ATPase/synthase activity of Paracoccus denitrificans Fo·F1 as related to the respiratory control phenomenon.
    Zharova TV; Vinogradov AD
    Biochim Biophys Acta; 2014 Aug; 1837(8):1322-9. PubMed ID: 24732246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory Complex I in
    Jones AJ; Blaza JN; Varghese F; Hirst J
    J Biol Chem; 2017 Mar; 292(12):4987-4995. PubMed ID: 28174301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-dependent transformation of F0.F1-ATPase in Paracoccus denitrificans plasma membranes.
    Zharova TV; Vinogradov AD
    J Biol Chem; 2004 Mar; 279(13):12319-24. PubMed ID: 14722115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 1. Mechanism of ATP synthesis at the active site(s) of F0F1-ATPase.
    Pérez JA; Ferguson SJ
    Biochemistry; 1990 Nov; 29(46):10503-18. PubMed ID: 2148690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation.
    Dawson AG; Chappell JB
    Biochem J; 1978 Feb; 170(2):395-405. PubMed ID: 205211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reversibility of active sulphate transport in membrane vesicles of Paracoccus denitrificans.
    Burnell JN; John P; Whatley FR
    Biochem J; 1975 Sep; 150(3):527-36. PubMed ID: 1212205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paracoccus denitrificans proton-translocating ATPase: kinetics of oxidative phosphorylation.
    Kegyarikova KA; Zharova TV; Vinogradov AD
    Biochemistry (Mosc); 2010 Oct; 75(10):1264-71. PubMed ID: 21166644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy conservation during nitrate respiration in Paracoccus denitrificans.
    van Verseveld HW; Meijer EM; Stouthamer AH
    Arch Microbiol; 1977 Feb; 112(1):17-23. PubMed ID: 843167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADH oxidation and NAD+ reduction catalysed by tightly coupled inside-out vesicles from Paracoccus denitrificans.
    Kotlyar AB; Borovok N
    Eur J Biochem; 2002 Aug; 269(16):4020-4. PubMed ID: 12180978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Free energy coupling between H+-generating and H+-consuming pumps. Ratio between output and input forces.
    Petronilli V; Pietrobon D; Zoratti M; Azzone GF
    Eur J Biochem; 1986 Mar; 155(2):423-31. PubMed ID: 3007129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy conservation during aerobic growth in Paracoccus denitrificans.
    Meijer EM; van Verseveld HW; van der Beek EG; Stouthamer AH
    Arch Microbiol; 1977 Feb; 112(1):25-34. PubMed ID: 843168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transduction in the mitochondrionlike bacterium Paracoccus denitrificans during carbon- or sulphate-limited aerobic growth in continuous culture.
    Lawford HG
    Can J Biochem; 1978 Jan; 56(1):13-22. PubMed ID: 36970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative phosphorylation by membrane vesicles from Bacillus alcalophilus.
    Guffanti AA; Bornstein RF; Krulwich TA
    Biochim Biophys Acta; 1981 May; 635(3):619-30. PubMed ID: 6165388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.