BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6302270)

  • 1. Segmental flexibility and head-head interaction in scallop myosin. A study using saturation transfer electron paramagnetic resonance spectroscopy.
    Wells C; Bagshaw CR
    J Mol Biol; 1983 Feb; 164(1):137-57. PubMed ID: 6302270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The characterization of vanadate-trapped nucleotide complexes with spin-labelled myosins.
    Wells C; Bagshaw CR
    J Muscle Res Cell Motil; 1984 Feb; 5(1):97-112. PubMed ID: 6325500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two different preparations of subfragment-1 from scallop adductor myosin.
    Konno K; Watanabe S
    J Biochem; 1985 Jul; 98(1):141-8. PubMed ID: 2931424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An immunological approach to myosin light-chain function in thick filament linked regulation. 2. Effects of anti-scallop myosin light-chain antibodies. Possible regulatory role for the essential light chain.
    Wallimann T; Szent-Györgyi AG
    Biochemistry; 1981 Mar; 20(5):1188-97. PubMed ID: 6452895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of divalent cations on the rotational mobility of myosin, heavy meromyosin and myosin subfragment-1 and on the binding of heavy meromyosin to actin.
    Highsmith S
    Biochim Biophys Acta; 1978 Sep; 536(1):156-64. PubMed ID: 361092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Movement of scallop myosin on Nitella actin filaments: regulation by calcium.
    Vale RD; Szent-Gyorgyi AG; Sheetz MP
    Proc Natl Acad Sci U S A; 1984 Nov; 81(21):6775-8. PubMed ID: 6238334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteolysis of smooth muscle myosin by Staphylococcus aureus protease: preparation of heavy meromyosin and subfragment 1 with intact 20 000-dalton light chains.
    Ikebe M; Hartshorne DJ
    Biochemistry; 1985 Apr; 24(9):2380-7. PubMed ID: 3158349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The quantitative measurement of rotational motion of the subfragment-1 region of myosin by saturation transfer epr spectroscopy.
    Thomas DD; Seidel JC; Gergely J; Hyde JS
    J Supramol Struct; 1975; 3(4):376-90. PubMed ID: 172739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory properties of single-headed fragments of scallop myosin.
    Stafford WF; Szentkiralyi EM; Szent-Györgyi AG
    Biochemistry; 1979 Nov; 18(24):5273-80. PubMed ID: 160245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of regulatory light chain dissociation from scallop myosin.
    Bennett AJ; Bagshaw CR
    Biochem J; 1986 Jan; 233(1):179-86. PubMed ID: 3513756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Saturation transfer electron parametric resonance of an indane-dione spin-label. Calibration with hemoglobin and application to myosin rotational dynamics.
    Roopnarine O; Hideg K; Thomas DD
    Biophys J; 1993 Jun; 64(6):1896-907. PubMed ID: 8396449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolution of conformational states of spin-labeled myosin during steady-state ATP hydrolysis.
    Barnett VA; Thomas DD
    Biochemistry; 1987 Jan; 26(1):314-23. PubMed ID: 3030402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myosin-linked calcium regulation in squid mantle muscle. Light-chain components of squid myosin.
    Konno K; Arai K; Watanabe S
    J Biochem; 1979 Dec; 86(6):1639-50. PubMed ID: 160911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The kinetics of bivalent metal ion dissociation from myosin subfragments.
    Bennett AJ; Bagshaw CR
    Biochem J; 1986 Jan; 233(1):173-7. PubMed ID: 3006656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion of subfragment-1 in myosin and its supramolecular complexes: saturation transfer electron paramagnetic resonance.
    Thomas DD; Seidel JC; Hyde JS; Gergely J
    Proc Natl Acad Sci U S A; 1975 May; 72(5):1729-33. PubMed ID: 168572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intact heavy chain at the actin-subfragment 1 interface is required for ATPase activity of scallop myosin.
    Szentkiralyi EM
    J Muscle Res Cell Motil; 1987 Aug; 8(4):349-57. PubMed ID: 2958500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locking regulatory myosin in the off-state with trifluoperazine.
    Patel H; Margossian SS; Chantler PD
    J Biol Chem; 2000 Feb; 275(7):4880-8. PubMed ID: 10671524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-headed scallop myosin and regulation.
    Kalabokis VN; Vibert P; York ML; Szent-Györgyi AG
    J Biol Chem; 1996 Oct; 271(43):26779-82. PubMed ID: 8900158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The possible role of myosin A1 light chain in the weakening of actin-myosin interaction.
    Stepkowski D; Efimova N; Paczyņska A; Moczarska A; Nieznańska H; Kakol I
    Biochim Biophys Acta; 1997 Jun; 1340(1):105-14. PubMed ID: 9217020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the location of the divalent metal binding sites and the light chain subunits of vertebrate myosin.
    Bagshaw CR
    Biochemistry; 1977 Jan; 16(1):59-67. PubMed ID: 188447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.