These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6302364)

  • 1. Erythrocyte Na+ and K+ transport systems in children with Bartter syndrome: increase in passive sodium permeability.
    Mongeau JG; Garay R; de Mendonca M; Broyer M; Meyer P
    Kidney Int; 1983 Mar; 23(3):530-5. PubMed ID: 6302364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction of hypokalemia corrects the abnormalities in erythrocyte sodium transport in Bartter's syndrome.
    Korff JM; Siebens AW; Gill JR
    J Clin Invest; 1984 Nov; 74(5):1724-9. PubMed ID: 6501567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormalities of erythrocyte sodium transport systems in Bartter's syndrome.
    Sechi LA; Melis A; Bartoli E
    Am J Nephrol; 1992; 12(3):137-43. PubMed ID: 1329511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterogeneous derangement of cellular sodium metabolism in Bartter's syndrome. Description of two cases and review of the literature.
    Sechi LA; Melis A; Faedda R; Tedde R; Bartoli E
    Panminerva Med; 1992; 34(2):85-92. PubMed ID: 1408334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for imbalanced furosemide-sensitive Na+, K+ cotransport in hereditary stomatocytosis.
    Chailley B; Feo C; Garay R; Dagher G; Bruckdorfer R; Fischer S; Piau JP; Delaunay J
    Scand J Haematol; 1981 Nov; 27(5):365-73. PubMed ID: 7346999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of ouabain and furosemide on erythrocyte sodium and phosphate transport.
    Walter U
    Clin Pharmacol Ther; 1981 Dec; 30(6):709-17. PubMed ID: 6273055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examination of the ouabain-sensitive Na-K pump in essential hypertensive children of normal body weight.
    Koltai G; Aranyi Z; Czinner A
    Acta Paediatr Hung; 1985; 26(4):289-95. PubMed ID: 2420344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erythrocyte cation fluxes in essential hypertension of children and adolescents.
    Mongeau JG
    Int J Pediatr Nephrol; 1985; 6(1):41-6. PubMed ID: 3997372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased inward passive permeability in vitro to sodium in uraemic erythrocytes.
    Corry DB; Ellis CC; Tuck ML
    Clin Sci (Lond); 1996 Jan; 90(1):3-8. PubMed ID: 8697702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythrocyte sodium transport in Bartter's syndrome.
    Uchiyama M; Shah V; Daman Willems C; Dillon MJ
    Acta Paediatr Scand; 1988 Nov; 77(6):873-8. PubMed ID: 2849851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Trans-membrane cationic flow and hemodialysis].
    Sechi LA; Orecchioni C; Melis A; Pala A; Tedde R
    Boll Soc Ital Biol Sper; 1990 Oct; 66(10):1001-8. PubMed ID: 1710902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Irreversible changes in rat erythrocyte Na+ transport systems with progesterone and estradiol administration.
    Grichois ML; Franck D; Brossard M; De Mendonca M
    Clin Exp Hypertens A; 1986; 8(8):1295-311. PubMed ID: 2434270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium transport parameters in erythrocytes of patients with primary aldosteronism.
    Smith JB; Wade MB; Fineberg NS; Weinberger MH
    Hypertension; 1988 Feb; 11(2):141-6. PubMed ID: 2449394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythrocyte cationic transport systems in normal male and female volunteers.
    Lijnen P; M'Buyamba-Kabangu JR; Lissens W; Amery A
    Methods Find Exp Clin Pharmacol; 1985 Jan; 7(1):35-40. PubMed ID: 2985891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Na+ and K+ transport at basolateral membranes of epithelial cells. II. K+ efflux and stoichiometry of the Na,K-ATPase.
    Cox TC; Helman SI
    J Gen Physiol; 1986 Mar; 87(3):485-502. PubMed ID: 2420920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions.
    Lijnen P; Hespel P; Lommelen G; Laermans M; M'Buyamba-Kabangu JR; Amery A
    Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of active Na+ and K+ transport by thyroid hormone in a rat liver cell line: role of enhanced Na+ entry.
    Ismail-Beigi F; Haber RS; Loeb JN
    Endocrinology; 1986 Dec; 119(6):2527-36. PubMed ID: 3023015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Potassium and anion transport and activity of the Na+-pump in the erythrocyte membrane: 3 different mechanisms of regulation by intracellular calcium].
    Orlov SN; Pokudin NI; Kotelevtsev IuV
    Biokhimiia; 1987 Aug; 52(8):1373-86. PubMed ID: 2444274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of membrane-bound calcium on the activity of adenosine triphosphatase from erythrocytes and erythrocyte permeability for monovalent cations].
    Orlov SN; Shevchenko AS
    Biokhimiia; 1978 Feb; 43(2):208-15. PubMed ID: 148300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature adaptation of active sodium-potassium transport and of passive permeability in erythrocytes of ground squirrels.
    Kimzey SL; Willis JS
    J Gen Physiol; 1971 Dec; 58(6):634-49. PubMed ID: 5120391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.