These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 6302364)

  • 21. Outward sodium and potassium cotransport in human red cells.
    Garay R; Adragna N; Canessa M; Tosteson D
    J Membr Biol; 1981; 62(3):169-74. PubMed ID: 7328628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Na+/K+ co-transport system in erythrocytes from pregnant patients.
    Heilmann L; von Tempelhoff GF; Ulrich S
    Arch Gynecol Obstet; 1993; 253(4):167-74. PubMed ID: 8161250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intracellular concentration and transmembrane fluxes of sodium and potassium in erythrocytes of normal men and women.
    M'Buyamba-Kabangu JR; Lijnen P; Fagard R; Groeseneken D; Staessen J; Amery A
    Arch Gynecol; 1985; 236(4):219-24. PubMed ID: 2411229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Active and passive transport of sodium and potassium ions in erythrocytes of severely malnourished Jamaican children.
    Willis JS; Golden MH
    Eur J Clin Nutr; 1988 Aug; 42(8):635-45. PubMed ID: 3141142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of human erythrocyte and leukocyte Na+, K(+)-pump activity by lysophosphatidylcholines.
    Lijnen P; Huysecom J; Fagard R; Staessen J; Amery A
    Methods Find Exp Clin Pharmacol; 1990 May; 12(4):281-6. PubMed ID: 2374475
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane ion transport in Bartter's syndrome: evidence for a new syndrome subtype.
    Koren W; Peleg E; Rosenthal T; Postnov YV
    Hypertension; 1997 Dec; 30(6):1338-41. PubMed ID: 9403550
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of volume changes on ouabain-insensitive net outward cation movements in human red cells.
    Adragna NC; Tosteson DC
    J Membr Biol; 1984; 78(1):43-52. PubMed ID: 6323716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A kinetic study of cation transport in erythrocytes from uremic patients.
    Corry DB; Lee DB; Tuck ML
    Kidney Int; 1987 Aug; 32(2):256-60. PubMed ID: 2443751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sodium and potassium fluxes and membrane potential of human neutrophils: evidence for an electrogenic sodium pump.
    Simchowitz L; Spilberg I; De Weer P
    J Gen Physiol; 1982 Mar; 79(3):453-79. PubMed ID: 6281359
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of L-carnitine on sodium transport in erythrocytes from dialyzed uremic patients.
    Labonia WD; Morelli OH; Gimenez MI; Freuler PV; Morelli OH
    Kidney Int; 1987 Nov; 32(5):754-9. PubMed ID: 2448515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence for a direct and non-receptor-mediated action of 5HT2 antagonists on transmembrane cation transport systems.
    Sechi LA; Tedde R; Cassisa L; Pala A; Marigliano A; Masia S; Melis A
    Cardiovasc Drugs Ther; 1990 Jan; 4 Suppl 1():63-7. PubMed ID: 2178367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular potassium transport and ATPase activity in Bartter's syndrome.
    Haljamäe H; Enger E; Sigström L
    Scand J Clin Lab Invest; 1975 Jan; 35(1):53-8. PubMed ID: 124092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of erythrocyte Na transport pathway(s) by excess Na intake.
    Dagher G; Brossard M; Feray JC; Garay RP
    Life Sci; 1985 Jul; 37(3):243-53. PubMed ID: 2989644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Red cell membrane Na+ transport systems in hereditary spherocytosis: relevance to understanding the increased Na+ permeability.
    Vives Corrons JL; Besson I
    Ann Hematol; 2001 Sep; 80(9):535-9. PubMed ID: 11669303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Red cell ouabain-resistant Na+ and K+ transport in Wistar, brown Norway and spontaneously hypertensive rats.
    Bin Talib HK; Zicha J
    Physiol Res; 1993; 42(3):181-8. PubMed ID: 8218151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coordinated regulation of intracellular K+ in the proximal tubule: Ba2+ blockade down-regulates the Na+,K+-ATPase and up-regulates two K+ permeability pathways.
    Kone BC; Brady HR; Gullans SR
    Proc Natl Acad Sci U S A; 1989 Aug; 86(16):6431-5. PubMed ID: 2548216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chloride-activated passive potassium transport in human erythrocytes.
    Dunham PB; Stewart GW; Ellory JC
    Proc Natl Acad Sci U S A; 1980 Mar; 77(3):1711-5. PubMed ID: 6929518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sodium and potassium ion transport accelerations in erythrocytes of DOC, DOC-salt, two-kidney, one clip, and spontaneously hypertensive rats. Role of hypokalemia and cell volume.
    Duhm J; Göbel BO; Beck FX
    Hypertension; 1983; 5(5):642-52. PubMed ID: 6311735
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [ATPase activity and sodium transport in erythrocytes of patients with essential hypertension (author's transl)].
    Walter U
    Klin Wochenschr; 1982 Jun; 60(12):607-16. PubMed ID: 6213810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sodium and potassium transport in trout (Salmo gairdneri) erythrocytes.
    Bourne PK; Cossins AR
    J Physiol; 1984 Feb; 347():361-75. PubMed ID: 6707960
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.