These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 6302416)

  • 1. [Neurophysiological mechanisms of pain perception].
    Hess R
    Methods Find Exp Clin Pharmacol; 1982; 4(7):463-7. PubMed ID: 6302416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic neural circuits between dorsal midbrain neurons that control fear-induced responses and seizure activity and nuclei of the pain inhibitory system elaborating postictal antinociceptive processes: a functional neuroanatomical and neuropharmacological study.
    Freitas RL; Ferreira CM; Ribeiro SJ; Carvalho AD; Elias-Filho DH; Garcia-Cairasco N; Coimbra NC
    Exp Neurol; 2005 Feb; 191(2):225-42. PubMed ID: 15649478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The spinal enkephalinergic and serotoninergic systems in the control of transmission of nociceptive messages].
    Cesselin F; Bourgoin S; Artaud F; Gozlan H; Hamon M
    J Pharmacol; 1985; 16 Suppl 1():119-37. PubMed ID: 2993751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat.
    Pertovaara A; Kontinen VK; Kalso EA
    Exp Neurol; 1997 Oct; 147(2):428-36. PubMed ID: 9344567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Involvement of serotoninergic systems in analgesia induced by electrical stimulation of brain stem areas (author's transl)].
    Oliveras JL; Sierralta F; Fardin V; Besson JM
    J Physiol (Paris); 1981; 77(2-3):473-82. PubMed ID: 7026772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous pain control mechanisms: review and hypothesis.
    Basbaum AI; Fields HL
    Ann Neurol; 1978 Nov; 4(5):451-62. PubMed ID: 216303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia.
    Coimbra NC; De Oliveira R; Freitas RL; Ribeiro SJ; Borelli KG; Pacagnella RC; Moreira JE; da Silva LA; Melo LL; Lunardi LO; Brandão ML
    Exp Neurol; 2006 Jan; 197(1):93-112. PubMed ID: 16303128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls.
    Villanueva L; Le Bars D
    Biol Res; 1995; 28(1):113-25. PubMed ID: 8728826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deconstructing endogenous pain modulations.
    Mason P
    J Neurophysiol; 2005 Sep; 94(3):1659-63. PubMed ID: 16105951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Physiology of nociception].
    Guirimand F; Le Bars D
    Ann Fr Anesth Reanim; 1996; 15(7):1048-79. PubMed ID: 9180983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Neurophysiologic mechanisms of pain].
    Limanskiĭ IuP
    Fiziol Zh (1978); 1980; 26(2):235-44. PubMed ID: 6153993
    [No Abstract]   [Full Text] [Related]  

  • 12. Descending control of spinal nociception from the periaqueductal grey distinguishes between neurons with and without C-fibre inputs.
    Waters AJ; Lumb BM
    Pain; 2008 Jan; 134(1-2):32-40. PubMed ID: 17467173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tonic inhibitory role of alpha4beta2 subtype of nicotinic acetylcholine receptors on nociceptive transmission in the spinal cord in mice.
    Rashid MH; Furue H; Yoshimura M; Ueda H
    Pain; 2006 Nov; 125(1-2):125-35. PubMed ID: 16781069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperpolarization-activated and cyclic nucleotide-gated cation channel subunit 2 ion channels modulate synaptic transmission from nociceptive primary afferents containing substance P to secondary sensory neurons in laminae I-IIo of the rodent spinal dorsal horn.
    Papp I; Szucs P; Holló K; Erdélyi F; Szabó G; Antal M
    Eur J Neurosci; 2006 Sep; 24(5):1341-52. PubMed ID: 16987220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Actions of propofol on substantia gelatinosa neurones in rat spinal cord revealed by in vitro and in vivo patch-clamp recordings.
    Takazawa T; Furue H; Nishikawa K; Uta D; Takeshima K; Goto F; Yoshimura M
    Eur J Neurosci; 2009 Feb; 29(3):518-28. PubMed ID: 19222560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain.
    Abols IA; Basbaum AI
    J Comp Neurol; 1981 Sep; 201(2):285-97. PubMed ID: 7287930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xenon attenuates excitatory synaptic transmission in the rodent prefrontal cortex and spinal cord dorsal horn.
    Haseneder R; Kratzer S; Kochs E; Mattusch C; Eder M; Rammes G
    Anesthesiology; 2009 Dec; 111(6):1297-307. PubMed ID: 19934875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substantia gelatinosa neurones hyperpolarized in vitro by enkephalin.
    Yoshimura M; North RA
    Nature; 1983 Oct 6-12; 305(5934):529-30. PubMed ID: 6621700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: enkephalin and substance P.
    Hökfelt T; Ljungdahl A; Terenius L; Elde R; Nilsson G
    Proc Natl Acad Sci U S A; 1977 Jul; 74(7):3081-5. PubMed ID: 331326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Analgesic mechanisms of noradrenaline in the spinal dorsal horn].
    Feng YP; Yang K; Li YQ
    Sheng Li Ke Xue Jin Zhan; 2001 Jul; 32(3):225-8. PubMed ID: 12545794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.