These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 6302561)

  • 1. Mauthner axon networks mediating supraspinal components of the startle response in the goldfish.
    Hackett JT; Faber DS
    Neuroscience; 1983; 8(2):317-31. PubMed ID: 6302561
    [No Abstract]   [Full Text] [Related]  

  • 2. Properties and distribution of anterior VIIIth nerve excitatory inputs to the goldfish Mauthner cell.
    Zottoli SJ; Faber DS
    Brain Res; 1979 Oct; 174(2):319-23. PubMed ID: 39661
    [No Abstract]   [Full Text] [Related]  

  • 3. Inputs from the posterior lateral line nerves upon the goldfish Mauthner cells. II. Evidence that the inhibitory components are mediated by interneurons of the recurrent collateral network.
    Faber DS; Korn H
    Brain Res; 1975 Oct; 96(2):349-56. PubMed ID: 1175018
    [No Abstract]   [Full Text] [Related]  

  • 4. [Effect of stimulation of the superior colliculi of the tectum mesencephali on the motor neurons of the neck muscles of the cat].
    Gura EV; Limanskiĭ IuP
    Neirofiziologiia; 1986; 18(2):197-202. PubMed ID: 3012380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decrease in occurrence of fast startle responses after selective Mauthner cell ablation in goldfish (Carassius auratus).
    Zottoli SJ; Newman BC; Rieff HI; Winters DC
    J Comp Physiol A; 1999 Feb; 184(2):207-18. PubMed ID: 10192953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrically evoked behaviors: axons and synapses mapped with collision tests.
    Yeomans J
    Behav Brain Res; 1995 Mar; 67(2):121-32. PubMed ID: 7779287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local Spinal Cord Circuits and Bilateral Mauthner Cell Activity Function Together to Drive Alternative Startle Behaviors.
    Liu YC; Hale ME
    Curr Biol; 2017 Mar; 27(5):697-704. PubMed ID: 28216316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projections of giant fibers, a class of reticular interneurons, in the brain of the silver hatchetfish.
    Barry MA; Bennett MV
    Brain Behav Evol; 1990; 36(6):391-400. PubMed ID: 2073576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural organization in the brainstem circuit mediating the primary acoustic head startle: an electrophysiological study in the rat.
    Pellet J
    Physiol Behav; 1990 Nov; 48(5):727-39. PubMed ID: 2082373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monosynaptic projections from the pontine reticular formation to the 3rd nucleus in the cat.
    Highstein SM; Cohen B; Matsunami K
    Brain Res; 1974 Jul; 75(2):340-4. PubMed ID: 4367146
    [No Abstract]   [Full Text] [Related]  

  • 11. Using intracranial electrical stimulation to study the timing of prepulse inhibition of the startle reflex.
    Li L; Yeomans JS
    Brain Res Brain Res Protoc; 2000 Feb; 5(1):67-74. PubMed ID: 10719267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of the vestibular nucleus and vestibulospinal tract to the startle reflex.
    Li L; Steidl S; Yeomans JS
    Neuroscience; 2001; 106(4):811-21. PubMed ID: 11682166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation of Renshaw cells in relation to orthodromic and antidromic excitation of motoneurons.
    Ryall RW; Piercey MF; Polosa C; Goldfarb J
    J Neurophysiol; 1972 Jan; 35(1):137-48. PubMed ID: 4332852
    [No Abstract]   [Full Text] [Related]  

  • 14. Influence of superior colliculus on cat neck motoneurons.
    Anderson ME; Yoshida M; Wilson VJ
    J Neurophysiol; 1971 Sep; 34(5):898-907. PubMed ID: 4328961
    [No Abstract]   [Full Text] [Related]  

  • 15. An identifiable class of statoacoustic interneurons with bilateral projections in the goldfish medulla.
    Zottoli SJ; Faber DS
    Neuroscience; 1980; 5(7):1287-302. PubMed ID: 7402469
    [No Abstract]   [Full Text] [Related]  

  • 16. "Latent" inhibitory connections become functional during activity-dependent plasticity.
    Charpier S; Behrends JC; Triller A; Faber DS; Korn H
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):117-20. PubMed ID: 7816799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies on the Mauthner cell of teleost fish in relation to sensory input.
    Zottoli SJ; Bentley AP; Prendergast BJ; Rieff HI
    Brain Behav Evol; 1995; 46(3):151-64. PubMed ID: 8520934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short- and long-latency reflex pathways from neck afferents to hindlimb motoneurones in the cat.
    Kenins P; Kikillus H; Schomburg ED
    Brain Res; 1978 Jun; 149(1):235-8. PubMed ID: 207396
    [No Abstract]   [Full Text] [Related]  

  • 19. Localization of optic tectal input to the ventral dendrite of the goldfish Mauthner cell.
    Zottoli SJ; Hordes AR; Faber DS
    Brain Res; 1987 Jan; 401(1):113-21. PubMed ID: 3815088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recurrent control from motor axon collaterals of Ia inhibitory pathways in the spinal cord of the cat.
    Lindström S
    Acta Physiol Scand Suppl; 1973; 392():1-43. PubMed ID: 4356646
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.