These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 6303041)

  • 21. Optokinetic drum tilt hastens the onset of vection-induced motion sickness.
    Bubka A; Bonato F
    Aviat Space Environ Med; 2003 Apr; 74(4):315-9. PubMed ID: 12688448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of tilted stripes in an optokinetic drum on gastric myoelectric activity and subjective reports of motion sickness.
    Andre JT; Muth ER; Stern RM; Leibowitz HW
    Aviat Space Environ Med; 1996 Jan; 67(1):30-3. PubMed ID: 8929199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multisensory, cognitive, and motor influences on human spatial orientation in weightlessness.
    Lackner JR; DiZio P
    J Vestib Res; 1993; 3(3):361-72. PubMed ID: 8275269
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Motion sickness: a cholinomimetic agent hypothesis.
    Sheehan SE; Oman CM; Duda KR
    J Vestib Res; 2011; 21(4):209-17. PubMed ID: 21846953
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating sensory conflict and postural instability. Theories of motion sickness.
    Warwick-Evans LA; Symons N; Fitch T; Burrows L
    Brain Res Bull; 1998 Nov; 47(5):465-9. PubMed ID: 10052575
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The possible role of nystagmus in motion sickness: a hypothesis.
    Ebenholtz SM; Cohen MM; Linder BJ
    Aviat Space Environ Med; 1994 Nov; 65(11):1032-5. PubMed ID: 7840743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motion sickness induced by optokinetic drums.
    Bos JE; Bles W
    Aviat Space Environ Med; 2004 Feb; 75(2):172-4. PubMed ID: 14960055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. "Torso rotation" experiments; 1: Adaptation to motion sickness does not correlate with changes in VOR gain.
    Bouyer LJ; Watt DG
    J Vestib Res; 1996; 6(5):367-75. PubMed ID: 8887893
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rotation direction change hastens motion sickness onset in an optokinetic drum.
    Bonato F; Bubka A; Story M
    Aviat Space Environ Med; 2005 Sep; 76(9):823-7. PubMed ID: 16173677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Motion sickness].
    Taillemite JP; Devaulx P; Bousquet F
    Med Trop (Mars); 1997; 57(4 Bis):483-7. PubMed ID: 9612757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of vestibular system and the cerebellum in adapting to gravitoinertial, spatial orientation and postural challenges of REM sleep.
    Dharani NE
    Med Hypotheses; 2005; 65(1):83-9. PubMed ID: 15893123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rotation velocity change and motion sickness in an optokinetic drum.
    Bubka A; Bonato F; Urmey S; Mycewicz D
    Aviat Space Environ Med; 2006 Aug; 77(8):811-5. PubMed ID: 16909874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optokinetic nystagmus, vection, and motion sickness.
    Flanagan MB; May JG; Dobie TG
    Aviat Space Environ Med; 2002 Nov; 73(11):1067-73. PubMed ID: 12433229
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roll motion stimuli: sensory conflict, perceptual weighting and motion sickness.
    de Graaf B; Bles W; Bos JE
    Brain Res Bull; 1998 Nov; 47(5):489-95. PubMed ID: 10052579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Collective motion in animal groups from a neurobiological perspective: the adaptive benefits of dynamic sensory loads and selective attention.
    Lemasson BH; Anderson JJ; Goodwin RA
    J Theor Biol; 2009 Dec; 261(4):501-10. PubMed ID: 19699212
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling the dynamics of sensory reweighting.
    Carver S; Kiemel T; Jeka JJ
    Biol Cybern; 2006 Aug; 95(2):123-34. PubMed ID: 16639582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autonomic responses during motion sickness induced by virtual reality.
    Ohyama S; Nishiike S; Watanabe H; Matsuoka K; Akizuki H; Takeda N; Harada T
    Auris Nasus Larynx; 2007 Sep; 34(3):303-6. PubMed ID: 17336009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Space-time relativity in self-motion reproduction.
    Glasauer S; Schneider E; Grasso R; Ivanenko YP
    J Neurophysiol; 2007 Jan; 97(1):451-61. PubMed ID: 17050823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modelling motion sickness and subjective vertical mismatch detailed for vertical motions.
    Bos JE; Bles W
    Brain Res Bull; 1998 Nov; 47(5):537-42. PubMed ID: 10052585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulating sensory-motor incongruence in healthy volunteers: implications for a cortical model of pain.
    McCabe CS; Haigh RC; Halligan PW; Blake DR
    Rheumatology (Oxford); 2005 Apr; 44(4):509-16. PubMed ID: 15644392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.