These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 6303308)
1. Inhibition of microsomal oxidation of alcohols and of hydroxyl-radical-scavenging agents by the iron-chelating agent desferrioxamine. Cederbaum AI; Dicker E Biochem J; 1983 Jan; 210(1):107-13. PubMed ID: 6303308 [TBL] [Abstract][Full Text] [Related]
2. Role of catalase and hydroxyl radicals in the oxidation of methanol by rat liver microsomes. Cederbaum AI; Qureshi A Biochem Pharmacol; 1982 Feb; 31(3):329-35. PubMed ID: 6280725 [TBL] [Abstract][Full Text] [Related]
3. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase. Winston GW; Feierman DE; Cederbaum AI Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321 [TBL] [Abstract][Full Text] [Related]
4. Organic hydroperoxide-dependent oxidation of ethanol by microsomes: lack of a role for free hydroxyl radicals. Cederbaum AI Arch Biochem Biophys; 1983 Nov; 227(1):329-38. PubMed ID: 6314910 [TBL] [Abstract][Full Text] [Related]
5. Microsomal interactions between iron, paraquat, and menadione: effect on hydroxyl radical production and alcohol oxidation. Beloqui O; Cederbaum AI Arch Biochem Biophys; 1985 Oct; 242(1):187-96. PubMed ID: 2996429 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of microsomal pathways of oxidation of alcohols and hydroxyl radical scavenging agents with carbon monoxide and cobalt protoporphyrin IX. Krikun G; Cederbaum AI Biochem Pharmacol; 1985 Aug; 34(16):2929-35. PubMed ID: 2992522 [TBL] [Abstract][Full Text] [Related]
7. The effect of EDTA and iron on the oxidation of hydroxyl radical scavenging agents and ethanol by rat liver microsomes. Feierman DE; Cederbaum AI Biochem Biophys Res Commun; 1983 Oct; 116(2):765-70. PubMed ID: 6418168 [TBL] [Abstract][Full Text] [Related]
8. Comparison of the ability of ferric complexes to catalyze microsomal chemiluminescence, lipid peroxidation, and hydroxyl radical generation. Puntarulo S; Cederbaum AI Arch Biochem Biophys; 1988 Aug; 264(2):482-91. PubMed ID: 2840858 [TBL] [Abstract][Full Text] [Related]
9. Increased microsomal oxidation of hydroxyl radical scavenging agents and ethanol after chronic consumption of ethanol. Klein SM; Cohen G; Lieber CS; Cederbaum AI Arch Biochem Biophys; 1983 Jun; 223(2):425-32. PubMed ID: 6683096 [TBL] [Abstract][Full Text] [Related]
10. Stereochemical studies on the cytochrome P-450 and hydroxyl radical dependent pathways of 2-butanol oxidation by microsomes from chow-fed, phenobarbital-treated, and ethanol-treated rats. Krikun G; Cederbaum AI Biochemistry; 1984 Nov; 23(23):5489-94. PubMed ID: 6095901 [TBL] [Abstract][Full Text] [Related]
11. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol. Cederbaum AI; Qureshi A; Cohen G Biochem Pharmacol; 1983 Dec; 32(23):3517-24. PubMed ID: 6316986 [TBL] [Abstract][Full Text] [Related]
12. NADH-dependent microsomal interaction with ferric complexes and production of reactive oxygen intermediates. Kukiełka E; Cederbaum AI Arch Biochem Biophys; 1989 Dec; 275(2):540-50. PubMed ID: 2556968 [TBL] [Abstract][Full Text] [Related]
13. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents. Dicker E; Cederbaum AI Biochem Pharmacol; 1991 Jul; 42(3):529-35. PubMed ID: 1650215 [TBL] [Abstract][Full Text] [Related]
14. Role of iron, hydrogen peroxide and reactive oxygen species in microsomal oxidation of glycerol to formaldehyde. Clejan LA; Cederbaum AI Arch Biochem Biophys; 1991 Feb; 285(1):83-9. PubMed ID: 1846735 [TBL] [Abstract][Full Text] [Related]
15. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. I. Oxidation of hydroxyl radical scavenging agents. Winston GW; Cederbaum AI J Biol Chem; 1983 Feb; 258(3):1508-13. PubMed ID: 6296101 [TBL] [Abstract][Full Text] [Related]
16. Requirement for iron for the production of hydroxyl radicals by rat liver quinone reductase. Dicker E; Cederbaum AI J Pharmacol Exp Ther; 1993 Sep; 266(3):1282-90. PubMed ID: 7690400 [TBL] [Abstract][Full Text] [Related]
17. Hydroxyl radicals are not involved in NADPH dependent microsomal lipid peroxidation. Bast A; Steeghs MH Experientia; 1986 May; 42(5):555-6. PubMed ID: 3011492 [TBL] [Abstract][Full Text] [Related]
18. Role of hydroxyl radicals in the iron-ethylenediaminetetraacetic acid mediated stimulation of microsomal oxidation of ethanol. Cederbaum AI; Dicker E; Cohen G Biochemistry; 1980 Aug; 19(16):3698-704. PubMed ID: 6773547 [TBL] [Abstract][Full Text] [Related]
19. Differential effects of the cytochrome P-450/reductase ratio on the oxidation of ethanol and the hydroxyl radical scavenging agent 2-keto-4-thiomethylbutyric acid (KMBA). Winston GW; Cederbaum AI Biochem Pharmacol; 1986 Nov; 35(22):4053-8. PubMed ID: 3022748 [TBL] [Abstract][Full Text] [Related]
20. Role of hydroxyl radicals in microsomal oxidation of alcohols. Cederbaum AI; Dicker E; Cohen G Adv Exp Med Biol; 1980; 132():1-10. PubMed ID: 6999867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]