These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 6303325)

  • 1. Dibutyryl cyclic AMP triggers Ca2+ influx and Ca2+-dependent electrical activity in pancreatic B cells.
    Henquin JC; Meissner HP
    Biochem Biophys Res Commun; 1983 Apr; 112(2):614-20. PubMed ID: 6303325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of theophylline and dibutyryl cyclic adenosine monophosphate on the membrane potential of mouse pancreatic beta-cells.
    Henquin JC; Meissner HP
    J Physiol; 1984 Jun; 351():595-612. PubMed ID: 6205145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ionic, electrical, and secretory effects of endogenous cyclic adenosine monophosphate in mouse pancreatic B cells: studies with forskolin.
    Henquin JC; Meissner HP
    Endocrinology; 1984 Sep; 115(3):1125-34. PubMed ID: 6086286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms underlying the insulinostatic effect of peptide YY in mouse pancreatic islets.
    Nieuwenhuizen AG; Karlsson S; Fridolf T; Ahrén B
    Diabetologia; 1994 Sep; 37(9):871-8. PubMed ID: 7806016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct mechanisms for two amplification systems of insulin release.
    Henquin JC; Bozem M; Schmeer W; Nenquin M
    Biochem J; 1987 Sep; 246(2):393-9. PubMed ID: 2825637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cobalt inhibition of insulin release: evidence for an action not related to Ca2+ uptake.
    Wollheim CB; Janjic D
    Am J Physiol; 1984 Jan; 246(1 Pt 1):C57-62. PubMed ID: 6198924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-antagonists and islet function. IV. Effect of D600.
    Malaisse WJ; Devis G; Pipeleers DG; Somers G
    Diabetologia; 1976 Mar; 12(1):77-81. PubMed ID: 767190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscarinic control of pancreatic B cell function involves sodium-dependent depolarization and calcium influx.
    Henquin JC; Garcia MC; Bozem M; Hermans MP; Nenquin M
    Endocrinology; 1988 May; 122(5):2134-42. PubMed ID: 3282876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specificity of divalent cation requirement for insulin release. Effects of strontium.
    Henquin JC
    Pflugers Arch; 1980 Jan; 383(2):123-9. PubMed ID: 6770336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acute sodium omission on insulin release, ionic flux and membrane potential in mouse pancreatic B-cells.
    de Miguel R; Tamagawa T; Schmeer W; Nenquin M; Henquin JC
    Biochim Biophys Acta; 1988 Apr; 969(2):198-207. PubMed ID: 3281715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose-, calcium- and concentration-dependence of acetylcholine stimulation of insulin release and ionic fluxes in mouse islets.
    Garcia MC; Hermans MP; Henquin JC
    Biochem J; 1988 Aug; 254(1):211-8. PubMed ID: 3052430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ionic, electrical, and secretory effects of protein kinase C activation in mouse pancreatic B-cells: studies with a phorbol ester.
    Bozem M; Nenquin M; Henquin JC
    Endocrinology; 1987 Sep; 121(3):1025-33. PubMed ID: 3304975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of the stimulation of insulin release by oxytocin in normal mouse islets.
    Gao ZY; Drews G; Henquin JC
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):169-74. PubMed ID: 1674863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a calcium channel agonist on the electrical, ionic and secretory events in mouse pancreatic B-cells.
    Henquin JC; Schmeer W; Nenquin M; Meissner HP
    Biochem Biophys Res Commun; 1985 Sep; 131(2):980-6. PubMed ID: 3902016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Significance of membrane repolarization and cyclic AMP changes in mouse pancreatic B-cells for the inhibition of insulin release by galanin.
    Drews G; Debuyser A; Henquin JC
    Mol Cell Endocrinol; 1994 Oct; 105(1):97-102. PubMed ID: 7529734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vanadate stimulation of insulin release in normal mouse islets.
    Zhang AQ; Gao ZY; Gilon P; Nenquin M; Drews G; Henquin JC
    J Biol Chem; 1991 Nov; 266(32):21649-56. PubMed ID: 1657974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of Ca2+ in secretagogue-stimulated breakdown of phosphatidylinositol in rat pancreatic islets.
    Axen KV; Schubart UK; Blake AD; Fleischer N
    J Clin Invest; 1983 Jul; 72(1):13-21. PubMed ID: 6192142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of the stimulation of insulin release in vitro by HB 699, a benzoic acid derivative similar to the non-sulphonylurea moiety of glibenclamide.
    Garrino MG; Schmeer W; Nenquin M; Meissner HP; Henquin JC
    Diabetologia; 1985 Sep; 28(9):697-703. PubMed ID: 3934021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 9-Aminoacridine- and tetraethylammonium-induced reduction of the potassium permeability in pancreatic B-cells. Effects on insulin release and electrical properties.
    Henquin JC; Meissner HP; Preissler M
    Biochim Biophys Acta; 1979 Nov; 587(4):579-92. PubMed ID: 389293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative importance of extracellular and intracellular Ca2+ for acetylcholine stimulation of insulin release in mouse islets.
    Hermans MP; Henquin JC
    Diabetes; 1989 Feb; 38(2):198-204. PubMed ID: 2644142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.