BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 6303331)

  • 1. Nitrite reactivity of the binuclear copper site in T2D Rhus laccase: preparation of half met-NO2- T2D laccase and its correlation to half met-NO2- hemocyanin and tyrosinase.
    Spira DJ; Solomon EI
    Biochem Biophys Res Commun; 1983 Apr; 112(2):729-36. PubMed ID: 6303331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EXAFS investigation of the binuclear cupric site in met T2D Rhus laccase and its azide bound derivative.
    Spira DJ; Co MS; Solomon EI; Hodgson KO
    Biochem Biophys Res Commun; 1983 Apr; 112(2):746-53. PubMed ID: 6221725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Cu(I) determination using X-ray absorption edge spectroscopy: oxidation of the reduced binuclear copper site in type 2 depleted Rhus laccase.
    Hahn JE; Co MS; Spira DJ; Hodgson KO; Solomon EI
    Biochem Biophys Res Commun; 1983 Apr; 112(2):737-45. PubMed ID: 6221724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the spectral features associated with peroxide reactivity of the coupled binuclear copper active site in type 2 depleted and native Rhus laccase.
    Penner-Hahn JE; Hedman B; Hodgson KO; Spira DJ; Solomon EI
    Biochem Biophys Res Commun; 1984 Mar; 119(2):567-74. PubMed ID: 6231927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation by EPR of a reductively decoupled type 3 site in type 2 copper depleted laccase.
    Frank P; Pecht I
    Biochem Biophys Res Commun; 1983 Jul; 114(1):57-64. PubMed ID: 6309174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Letter: Susceptibility studies of laccase and oxyhemocyanin using an ultrasensitive magnetometer. Antiferromagnetic behavior of the type 3 copper in Rhus laccase.
    Solomon EI; Dooley DM; Wang RH; Gray HB; Credonio M; Mogno F; Romani GL
    J Am Chem Soc; 1976 Feb; 98(4):1029-31. PubMed ID: 128567
    [No Abstract]   [Full Text] [Related]  

  • 7. Heterogeneity of the Type 3 copper in Japanese-lacquer-tree (Rhus vernicifera) laccase.
    Morpurgo L; Desideri A; Rotilio G
    Biochem J; 1982 Dec; 207(3):625-7. PubMed ID: 6299275
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactions of nitric oxide with tree and fungal laccase.
    Martin CT; Morse RH; Kanne RM; Gray HB; Malmström BG; Chan SI
    Biochemistry; 1981 Sep; 20(18):5147-55. PubMed ID: 6271178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed electron paramagnetic resonance studies of types I and II coper of Rhus vernicifera laccase and porcine ceruloplasmin.
    MondovĂ­ B; Graziani MT; Mims WB; Oltzik R; Peisach J
    Biochemistry; 1977 Sep; 16(19):4198-202. PubMed ID: 197989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of Rhus vernicifera laccase type 1 copper by substituted hydroquinones.
    Holwerda RA; Clemmer JD; Yoneda GS; McKerley BJ
    Bioinorg Chem; 1978; 8(3):255-65. PubMed ID: 148299
    [No Abstract]   [Full Text] [Related]  

  • 11. The state of copper in Rhus laccase as compared with those in other copper complexes.
    Nakamura T; Ogura Y
    J Biochem; 1966 May; 59(5):449-55. PubMed ID: 4289812
    [No Abstract]   [Full Text] [Related]  

  • 12. Copper transfer from Rhus vernicifera laccase.
    Meadows KA; Morie-Bebel MM; McMillin DR
    J Inorg Biochem; 1991 Mar; 41(4):253-60. PubMed ID: 1647440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary relationships among copper proteins containing coupled binuclear copper sites.
    Lerch K; Germann UA
    Prog Clin Biol Res; 1988; 274():331-48. PubMed ID: 3136463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The oxidation of Octopus vulgaris hemocyanin by nitrogen oxides.
    Salvato B; Giacometti GM; Beltramini M; Zilio F; Giacometti G; Magliozzo RS; Peisach J
    Biochemistry; 1989 Jan; 28(2):680-4. PubMed ID: 2540804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of a stable half met derivative of type 2 depleted Rhus laccase: exogenous ligand binding to the type 3 site.
    Spira DJ; Winkler ME; Solomon EI
    Biochem Biophys Res Commun; 1982 Jul; 107(2):721-6. PubMed ID: 6289841
    [No Abstract]   [Full Text] [Related]  

  • 16. Room temperature ESR spectra of Rhus vernicifera laccase and derivatives.
    Sakurai T; Takahashi J
    Biochem Biophys Res Commun; 1995 Oct; 215(1):235-40. PubMed ID: 7575597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic reactions of Rhus vernicifera laccase and its type-2 copper-depleted derivatives with hexacyanoferrate(II).
    Sakurai T
    Biochem J; 1992 Jun; 284 ( Pt 3)(Pt 3):681-5. PubMed ID: 1320374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray absorption study of Rhus laccase: evidence for a copper-copper interaction, which disappears on type 2 copper removal.
    Woolery GL; Powers L; Peisach J; Spiro TG
    Biochemistry; 1984 Jul; 23(15):3428-34. PubMed ID: 6235850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of Cu-N3- stretching and N3- asymmetric stretching bands for mono-azide adduct of Rhus vernicifera laccase.
    Hirota S; Matsumoto H; Huang HW; Sakurai T; Kitagawa T; Yamauchi O
    Biochem Biophys Res Commun; 1998 Feb; 243(2):435-7. PubMed ID: 9480826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast copper-thionein can reconstitute the Japanese-lacquer-tree (Rhus vernicifera) laccase from the Type 2-copper-depleted enzyme via a direct copper(I)-transfer mechanism.
    Morpurgo L; Hartmann HJ; Desideri A; Weser U; Rotilio G
    Biochem J; 1983 May; 211(2):515-7. PubMed ID: 6307284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.