These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 6303456)

  • 21. Alloxan-induced luminol luminescence as a tool for investigating mechanisms of radical-mediated diabetogenicity.
    Grankvist K
    Biochem J; 1981 Dec; 200(3):685-90. PubMed ID: 7342976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The interaction of copper chloride with erythrocyte membrane as a source of activated oxygen species. A chemiluminescent study.
    Ribarov SR; Bochev PG
    Gen Physiol Biophys; 1984 Oct; 3(5):431-5. PubMed ID: 6096204
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amelioration of glucose induced hemolysis of human erythrocytes by vitamin E.
    Marar T
    Chem Biol Interact; 2011 Sep; 193(2):149-53. PubMed ID: 21736874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies with primaquine in vitro: superoxide radical formation and oxidation of haemoglobin.
    Summerfield M; Tudhope GR
    Br J Clin Pharmacol; 1978 Oct; 6(4):319-23. PubMed ID: 212091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simple and effective method for hemolysis with a hypoxanthine-xanthine oxidase system and alteration of erythrocyte phospholipid composition during the hemolysis.
    Taniguchi M; Aikawa M; Sakagami T
    J Biochem; 1981 Mar; 89(3):795-800. PubMed ID: 6895220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Serum electrolytes can promote hydroxyl radical-initiated biomolecular damage from inflammation.
    Komaki Y; Simpson AM; Choe JK; Pinney MM; Herschlag D; Chuang YH; Mitch WA
    Free Radic Biol Med; 2019 Sep; 141():475-482. PubMed ID: 31349038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone.
    Li Y; Kuppusamy P; Zweir JL; Trush MA
    Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sod and catalase inactivation by singlet oxygen and peroxyl radicals.
    Escobar JA; Rubio MA; Lissi EA
    Free Radic Biol Med; 1996; 20(3):285-90. PubMed ID: 8720898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced radiation damage to the erythrocyte membrane in the presence of azide and other anions.
    Roberts PB
    Int J Radiat Biol Relat Stud Phys Chem Med; 1979 Jun; 35(6):561-70. PubMed ID: 314430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photohemolysis of erythrocytes enriched with superoxide dismutase, catalase and glutathione peroxidase.
    Finazzi-Agró A; Di Giulio A; Amicosante G; Crifó C
    Photochem Photobiol; 1986 Apr; 43(4):409-12. PubMed ID: 3714823
    [No Abstract]   [Full Text] [Related]  

  • 31. Superoxide dismutase enhances the formation of hydroxyl radicals in the reaction of 3-hydroxyanthranilic acid with molecular oxygen.
    Iwahashi H; Ishii T; Sugata R; Kido R
    Biochem J; 1988 May; 251(3):893-9. PubMed ID: 2843167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosensitization induced reactive oxygen species and oxidative damage in human erythrocytes.
    El-Missiry MA; Abou-Seif M
    Cancer Lett; 2000 Oct; 158(2):155-63. PubMed ID: 10960765
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of glutathione peroxidase by superoxide radical.
    Blum J; Fridovich I
    Arch Biochem Biophys; 1985 Aug; 240(2):500-8. PubMed ID: 2992378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative studies of the chemiluminescent horseradish peroxidase-catalysed peroxidation of acridan (GZ-11) and luminol reactions: effect of pH and scavengers of reactive oxygen species on the light intensity of these systems.
    Osman AM; Zomer G; Laane C; Hilhorst R
    Luminescence; 2000; 15(3):189-97. PubMed ID: 10862148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reactive oxygen species do not cause arsine-induced hemoglobin damage.
    Hatlelid KM; Carter DE
    J Toxicol Environ Health; 1997 Apr; 50(5):463-74. PubMed ID: 9140465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generation of reactive oxygen species from the reaction of selenium compounds with thiols and mammary tumor cells.
    Yan L; Spallholz JE
    Biochem Pharmacol; 1993 Jan; 45(2):429-37. PubMed ID: 8382065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ascorbic acid and glucose oxidation by ultraviolet A-generated oxygen free radicals.
    Giangiacomo A; Olesen PR; Ortwerth BJ
    Invest Ophthalmol Vis Sci; 1996 Jul; 37(8):1549-56. PubMed ID: 8675397
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of rhodanese with intermediates of oxygen reduction.
    Cannella C; Berni R
    FEBS Lett; 1983 Oct; 162(1):180-4. PubMed ID: 6311631
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of hydrogen peroxide, superoxide and hydroxyl radicals during the oxidation of dihydroxyfumaric acid by peroxidase.
    Halliwell B
    Biochem J; 1977 Jun; 163(3):441-8. PubMed ID: 195574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thiol oxidase activity of copper, zinc superoxide dismutase stimulates bicarbonate-dependent peroxidase activity via formation of a carbonate radical.
    Karunakaran C; Zhang H; Joseph J; Antholine WE; Kalyanaraman B
    Chem Res Toxicol; 2005 Mar; 18(3):494-500. PubMed ID: 15777089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.