These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 6303820)

  • 21. Reverse transformation and genome exposure in the C6 glial tumor cell line.
    Haag MM; Krystosek A; Arenson E; Puck TT
    Cancer Invest; 1994; 12(1):33-45. PubMed ID: 8281464
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation of multiple classes of mutants of CHO cells resistant to cyclic AMP.
    Gottesman MM; LeCam A; Bukowski M; Pastan I
    Somatic Cell Genet; 1980 Jan; 6(1):45-61. PubMed ID: 6245473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of butyrate in the reverse transformation reaction in mammalian cells.
    Storrie B; Puck TT; Wenger L
    J Cell Physiol; 1978 Jan; 94(1):69-75. PubMed ID: 201654
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic AMP and tumor promoters cause differential induction of ornithine decarboxylase and accumulation of putrescine in Chinese hamster ovary cells deficient in cyclic AMP-dependent protein kinase.
    Trevillyan JM; Byus CV
    Biochim Biophys Acta; 1983 Apr; 762(2):187-97. PubMed ID: 6299385
    [No Abstract]   [Full Text] [Related]  

  • 25. Morphological reverse transformation of Chinese hamster ovary (CHO) cells and surface fibronectin.
    Rajaraman R; Sunkara SP; Rao PN
    Cell Biol Int Rep; 1980 Oct; 4(10):897-906. PubMed ID: 6251978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rp diastereomeric analogs of cAMP inhibit both cAMP- and cGMP-induced dilation of hamster mesenteric small arteries.
    Jackson WF
    Pharmacology; 1996 Apr; 52(4):226-34. PubMed ID: 8841085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cyclic AMP inhibits mitogen-induced DNA synthesis in hamster fibroblasts, regardless of the signalling pathway involved.
    Magnaldo I; Pouysségur ; Paris S
    FEBS Lett; 1989 Mar; 245(1-2):65-9. PubMed ID: 2466701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative studies on the carbohydrate-containing membrane components of normal and adenosine 3':5'-cyclic monophosphate-treated Chinese hamster ovary cells.
    Baig MM; Roberts RM
    Biochem J; 1973 May; 134(1):329-39. PubMed ID: 4353087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo activation of cyclic adenosine 3':5'-phosphate-dependent protein kinase in Chinese hamster ovary cells treated with N-6, O-2'-diburyl cyclic adenosine 3':5'-phosphate.
    Li AP; Kawashima K; Hsie AW
    Biochem Biophys Res Commun; 1975 May; 64(2):507-13. PubMed ID: 167745
    [No Abstract]   [Full Text] [Related]  

  • 30. Cyclic AMP as an inducer of the cell differentiation of Trypanosoma cruzi.
    Rangel-Aldao R; Triana F; Fernández V; Comach G; Abate T; Montoreano R
    Biochem Int; 1988 Aug; 17(2):337-44. PubMed ID: 2847739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of cyclic nucleotides on deoxyribonucleic acid synthesis in hypophysectomized rat cartilage: stimulation of thymidine incorporation and potentiation of the action of somatomedin by analogs of adenosine 3',5'-monophosphate or a cyclic nucleotide phosphodiesterase inhibitor.
    Bomboy JD; Salmon WD
    Endocrinology; 1980 Aug; 107(2):626-32. PubMed ID: 6248332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the collagens synthesized by Chinese hamster ovary cells. Effect of colcemid and dibutyryladenosine cyclic monophosphate.
    Limeback H; Sodek J; Aubin J
    Biochemistry; 1982 Sep; 21(19):4720-9. PubMed ID: 6291590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of endogenous virus production by bromodeoxyuridine and dibutyryl cyclic AMP in Chinese hamster ovary cells.
    Tihon C; Hellman A
    Biochim Biophys Acta; 1979 Sep; 564(2):289-300. PubMed ID: 90523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reverse transformation of Chinese hamster ovary cells by methyl xanthines. Structure-function relationships.
    Rajaraman R; Faulkner G
    Exp Cell Res; 1984 Oct; 154(2):342-56. PubMed ID: 6090184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic AMP and the heat shock response in Chinese hamster ovary cells.
    Calderwood SK; Stevenson MA; Hahn GM
    Biochem Biophys Res Commun; 1985 Jan; 126(2):911-6. PubMed ID: 2983697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cyclic adenosine-3',5'-monophosphate-mediated cytotoxicity in steroid sensitive and resistant myeloma.
    Krett NL; Zell JL; Halgren RG; Pillay S; Traynor AE; Rosen ST
    Clin Cancer Res; 1997 Oct; 3(10):1781-7. PubMed ID: 9815564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of deoxyribonuclease II as an endonuclease involved in apoptosis.
    Barry MA; Eastman A
    Arch Biochem Biophys; 1993 Jan; 300(1):440-50. PubMed ID: 8424678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential expression of type I and type II cyclic AMP-dependent protein kinases during cell cycle and cyclic AMP-induced growth arrest.
    Haddox MK; Magun BE; Russell DH
    Proc Natl Acad Sci U S A; 1980 Jun; 77(6):3445-9. PubMed ID: 6158048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of cyclic AMP on chromatin-bound protein kinases in WI-38 fibroblasts stimulated to proliferate.
    Bombik BM; Baserga R
    Biochim Biophys Acta; 1976 Sep; 442(3):343-57. PubMed ID: 183819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increasing cAMP attenuates activation of mitogen-activated protein kinase.
    Sevetson BR; Kong X; Lawrence JC
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10305-9. PubMed ID: 7694290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.