These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 6303858)

  • 1. Effect of codon shortening and the antibiotics viomycin and sparsomycin upon the behaviour of bound aminoacyl-tRNA. Decoding at the ribosomal A site.
    Hornig H; Woolley P; Lührmann R
    FEBS Lett; 1983 Jun; 156(2):311-5. PubMed ID: 6303858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dinucleotide codon-anticodon interaction as a minimum requirement for ribosomal aa-tRNA binding: stabilisation by viomycin of aa-tRNA in the A site.
    Lührmann R
    Nucleic Acids Res; 1980 Dec; 8(23):5813-24. PubMed ID: 6162154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site.
    Wurmbach P; Nierhaus KH
    Proc Natl Acad Sci U S A; 1979 May; 76(5):2143-7. PubMed ID: 221915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoding at the ribosomal A site. The effect of a defined codon-anticodon mismatch upon the behavior of bound aminoacyl transfer RNA.
    Hornig H; Woolley P; Lührmann R
    J Biol Chem; 1984 May; 259(9):5632-6. PubMed ID: 6371008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome.
    Piepenburg O; Pape T; Pleiss JA; Wintermeyer W; Uhlenbeck OC; Rodnina MV
    Biochemistry; 2000 Feb; 39(7):1734-8. PubMed ID: 10677222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of elongation factor Tu with the aminoacyl transfer ribonucleic acid dimer Phe-tRNA-Glu-tRNA.
    Yamane T; Miller DL; Hopfield JJ
    Biochemistry; 1981 Jan; 20(2):449-52. PubMed ID: 7008845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial binding of the elongation factor Tu.GTP.aminoacyl-tRNA complex preceding codon recognition on the ribosome.
    Rodnina MV; Pape T; Fricke R; Kuhn L; Wintermeyer W
    J Biol Chem; 1996 Jan; 271(2):646-52. PubMed ID: 8557669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrolysis of GTP on elongation factor Tu.ribosome complexes promoted by 2'(3')-O-L-phenylalanyladenosine.
    Campuzano S; Modolell J
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):905-9. PubMed ID: 6987671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E; Parmeggiani A
    Eur J Biochem; 1989 Nov; 185(2):341-6. PubMed ID: 2684669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proofreading of the codon-anticodon interaction on ribosomes.
    Thompson RC; Stone PJ
    Proc Natl Acad Sci U S A; 1977 Jan; 74(1):198-202. PubMed ID: 319457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding of aminoacyl-tRNA to ribosomes promoted by elongation factor Tu. Studies on the role of GTP hydrolysis.
    Yokosawa H; Kawakita M; Arai K; Inoue-Yokosawa N; Kaziro Y
    J Biochem; 1975 Apr; 77(4):719-28. PubMed ID: 1097432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct functional classes of ram mutations in 16S rRNA.
    McClory SP; Devaraj A; Fredrick K
    RNA; 2014 Apr; 20(4):496-504. PubMed ID: 24572811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A GTPase reaction accompanying the rejection of Leu-tRNA2 by UUU-programmed ribosomes. Proofreading of the codon-anticodon interaction by ribosomes.
    Thompson RC; Dix DB; Gerson RB; Karim AM
    J Biol Chem; 1981 Jan; 256(1):81-6. PubMed ID: 6108958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tRNA and the guanosinetriphosphatase activity of elongation factor Tu.
    Swart GW; Parmeggiani A
    Biochemistry; 1989 Jan; 28(1):327-32. PubMed ID: 2539860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.
    Wolf H; Assmann D; Fischer E
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5324-8. PubMed ID: 364475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex.
    Stark H; Rodnina MV; Wieden HJ; Zemlin F; Wintermeyer W; van Heel M
    Nat Struct Biol; 2002 Nov; 9(11):849-54. PubMed ID: 12379845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome.
    Pape T; Wintermeyer W; Rodnina MV
    EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stoichiometry for the elongation factor Tu.aminoacyl-tRNA complex switches with temperature.
    Bilgin N; Ehrenberg M
    Biochemistry; 1995 Jan; 34(3):715-9. PubMed ID: 7827027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.