These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 6304107)

  • 1. Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster.
    Koenig JH; Saito K; Ikeda K
    J Cell Biol; 1983 Jun; 96(6):1517-22. PubMed ID: 6304107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a presynaptic blockage of transmission in a temperature-sensitive mutant of Drosophila.
    Koenig JH; Ikeda K
    J Neurobiol; 1983 Nov; 14(6):411-9. PubMed ID: 6139412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between the number of synaptic vesicles and the amount of transmitter released.
    Koenig JH; Kosaka T; Ikeda K
    J Neurosci; 1989 Jun; 9(6):1937-42. PubMed ID: 2566663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous release of multiquantal miniature excitatory junction potentials induced by a Drosophila mutant.
    Ikeda K; Koenig JH
    J Physiol; 1988 Dec; 406():215-23. PubMed ID: 3151078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila.
    Kosaka T; Ikeda K
    J Neurobiol; 1983 May; 14(3):207-25. PubMed ID: 6304244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of active zone subpopulation of vesicles to evoked and spontaneous release.
    Koenig JH; Ikeda K
    J Neurophysiol; 1999 Apr; 81(4):1495-505. PubMed ID: 10200186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic transmission reversibly conditioned by single-gene mutation in Drosophila melanogaster.
    Ikeda K; Ozawa S; Hagiwara S
    Nature; 1976 Feb; 259(5543):489-91. PubMed ID: 176591
    [No Abstract]   [Full Text] [Related]  

  • 8. Mutations in dynamin-related protein result in gross changes in mitochondrial morphology and affect synaptic vesicle recycling at the Drosophila neuromuscular junction.
    Rikhy R; Kamat S; Ramagiri S; Sriram V; Krishnan KS
    Genes Brain Behav; 2007 Feb; 6(1):42-53. PubMed ID: 17233640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological and functional effects of altered cysteine string protein at the Drosophila larval neuromuscular junction.
    Dawson-Scully K; Lin Y; Imad M; Zhang J; Marin L; Horne JA; Meinertzhagen IA; Karunanithi S; Zinsmaier KE; Atwood HL
    Synapse; 2007 Jan; 61(1):1-16. PubMed ID: 17068777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae.
    Feng Y; Ueda A; Wu CF
    J Neurogenet; 2004; 18(2):377-402. PubMed ID: 15763995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstrating the temperature sensitivity of synaptic transmission in a Drosophila mutant.
    Krans JL; Rivlin PK; Hoy RR
    J Undergrad Neurosci Educ; 2005; 4(1):A27-33. PubMed ID: 23493164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect on synaptic physiology of synaptotagmin mutations in Drosophila.
    DiAntonio A; Schwarz TL
    Neuron; 1994 Apr; 12(4):909-20. PubMed ID: 7909234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A temperature-sensitive paralytic mutant defines a primary synaptic calcium channel in Drosophila.
    Kawasaki F; Felling R; Ordway RW
    J Neurosci; 2000 Jul; 20(13):4885-9. PubMed ID: 10864946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol and synaptic transmitter release at crayfish neuromuscular junctions.
    Zamir O; Charlton MP
    J Physiol; 2006 Feb; 571(Pt 1):83-99. PubMed ID: 16339182
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of the membrane defect by divalent cations in the Drosophila mutant shibire.
    Costello WJ; Salkoff LB
    J Neurosci; 1986 Dec; 6(12):3634-9. PubMed ID: 3025381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dominant-negative NSF2 disrupts the structure and function of Drosophila neuromuscular synapses.
    Stewart BA; Mohtashami M; Rivlin P; Deitcher DL; Trimble WS; Boulianne GL
    J Neurobiol; 2002 Jun; 51(4):261-71. PubMed ID: 12150502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drosophila synaptotagmin I null mutants show severe alterations in vesicle populations but calcium-binding motif mutants do not.
    Loewen CA; Royer SM; Reist NE
    J Comp Neurol; 2006 May; 496(1):1-12. PubMed ID: 16528727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature and synaptic efficacy in frog skeletal muscle.
    Adams BA
    J Physiol; 1989 Jan; 408():443-55. PubMed ID: 2550626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ceramidase regulates synaptic vesicle exocytosis and trafficking.
    Rohrbough J; Rushton E; Palanker L; Woodruff E; Matthies HJ; Acharya U; Acharya JK; Broadie K
    J Neurosci; 2004 Sep; 24(36):7789-803. PubMed ID: 15356190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation.
    Li X; Goel P; Chen C; Angajala V; Chen X; Dickman DK
    Elife; 2018 Apr; 7():. PubMed ID: 29620520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.