BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 6304597)

  • 1. Naloxone reversible inhibition of reticular neurones in the rat caudal medulla produced by electrical stimulation of the periaqueductal grey matter.
    Hill RG; Morris R; Sofroniew MV
    Pain; 1983 Mar; 15(3):249-63. PubMed ID: 6304597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periaqueductal grey matter stimulation produces naloxone sensitive inhibition of reticular neurones in rat caudal medulla.
    Hill RG; Morris R; Sofroniew MV
    Life Sci; 1982 Nov 15-22; 31(20-21):2323-5. PubMed ID: 7162348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of lesions of medullary midline and lateral reticular areas on inhibition in the dorsal horn produced by periaqueductal grey stimulation in the cat.
    Morton CR; Duggan AW; Zhao ZQ
    Brain Res; 1984 May; 301(1):121-30. PubMed ID: 6733483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of noxious and non-noxious input on neurones according to location in ventral periaqueductal grey or dorsal raphe nucleus.
    Sanders KH; Klein CE; Mayor TE; Heym C; Handwerker HO
    Brain Res; 1980 Mar; 186(1):83-97. PubMed ID: 7357452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depletion of central beta-endorphin blocks midbrain stimulation produced analgesia in the freely-moving rat.
    Millan MH; Millan MJ; Herz A
    Neuroscience; 1986 Jul; 18(3):641-9. PubMed ID: 2944030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activation of bulbo-spinal controls by peripheral nociceptive inputs: diffuse noxious inhibitory controls.
    Villanueva L; Le Bars D
    Biol Res; 1995; 28(1):113-25. PubMed ID: 8728826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of intravenous fentanyl, morphine and naloxone on nociceptive responses of neurones in the rat caudal medulla.
    Mayer ML; Hill RG
    Neuropharmacology; 1978 Jul; 17(7):533-9. PubMed ID: 692817
    [No Abstract]   [Full Text] [Related]  

  • 8. Effects of focal electrical stimulation and morphine microinjection in the periaqueductal gray of the rat mesencephalon on neuronal activity in the medullary reticular formation.
    Mohrland JS; Gebhart GF
    Brain Res; 1980 Nov; 201(1):23-37. PubMed ID: 6251951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Actions of GABA, glycine, methionine-enkephalin and beta-endorphin compared with electrical stimulation of nucleus raphe magnus on responses evoked by tooth pulp stimulation in the medial reticular formation in the cat.
    Lovick TA; Wolstencroft JH
    Pain; 1983 Feb; 15(2):131-44. PubMed ID: 6302624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of bulboreticular unit responses to noxious stimuli by analgesic mesencephalic stimulation.
    Morrow TJ; Casey KL
    Somatosens Res; 1983; 1(2):151-68. PubMed ID: 6679918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial involvement of monoamines and opiates in the inhibition of rat spinal nociceptive neurons evoked by stimulation in midbrain periaqueductal gray or lateral reticular formation.
    Carstens E; Culhane ES; Banisadr R
    Brain Res; 1990 Jul; 522(1):7-13. PubMed ID: 2224516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opioid modulation of the response of preoptic neurones to stimulation of the ventral noradrenergic tract in female rats.
    Dyer RG; Grossman R
    J Physiol; 1988 Jun; 400():631-44. PubMed ID: 3418540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endogenous opioid-mediated inhibition of putative pain-modulating neurons in rat rostral ventromedial medulla.
    Pan ZZ; Fields HL
    Neuroscience; 1996 Oct; 74(3):855-62. PubMed ID: 8884781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat: activation of descending inhibition by morphine, glutamate and electrical stimulation.
    Jones SL; Gebhart GF
    Brain Res; 1988 Sep; 460(2):281-96. PubMed ID: 2852046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence that an excitatory connection between the periaqueductal gray and nucleus raphe magnus mediates stimulation produced analgesia.
    Behbehani MM; Fields HL
    Brain Res; 1979 Jul; 170(1):85-93. PubMed ID: 223721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergence of heterotopic nociceptive information onto neurons of caudal medullary reticular formation in monkey (Macaca fascicularis).
    Villanueva L; Cliffer KD; Sorkin LS; Le Bars D; Willis WD
    J Neurophysiol; 1990 May; 63(5):1118-27. PubMed ID: 2358866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of the caudal medulla in negative feedback mechanisms triggered by spatial summation of nociceptive inputs.
    Gall O; Bouhassira D; Chitour D; Le Bars D
    J Neurophysiol; 1998 Jan; 79(1):304-11. PubMed ID: 9425199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ventrolateral orbital cortex and periaqueductal gray stimulation-induced effects on on- and off-cells in the rostral ventromedial medulla in the rat.
    Hutchison WD; Harfa L; Dostrovsky JO
    Neuroscience; 1996 Jan; 70(2):391-407. PubMed ID: 8848148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of heterotopic noxious stimuli on activity of neurones in subnucleus reticularis dorsalis in the rat medulla.
    Villanueva L; Bing Z; Le Bars D
    J Physiol; 1994 Mar; 475(2):255-66. PubMed ID: 8021832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of spinal cord interneurons by narcotic microinjection and focal electrical stimulation in the periaqueductal central gray matter.
    Bennett GJ; Mayer DJ
    Brain Res; 1979 Aug; 172(2):243-57. PubMed ID: 466474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.