BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 6305716)

  • 1. Superoxide-dependent formation of hydroxyl radical catalyzed by transferrin.
    Motohashi N; Mori I
    FEBS Lett; 1983 Jun; 157(1):197-9. PubMed ID: 6305716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyl radical formation and iron-binding proteins. Stimulation by the purple acid phosphatases.
    Sibille JC; Doi K; Aisen P
    J Biol Chem; 1987 Jan; 262(1):59-62. PubMed ID: 3025217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of human serum transferrin and milk lactoferrin on hydroxyl radical formation from superoxide and hydrogen peroxide.
    Baldwin DA; Jenny ER; Aisen P
    J Biol Chem; 1984 Nov; 259(21):13391-4. PubMed ID: 6092375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence against transition metal-independent hydroxyl radical generation by xanthine oxidase.
    Lloyd RV; Mason RP
    J Biol Chem; 1990 Oct; 265(28):16733-6. PubMed ID: 2170352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J
    Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced production of hydroxyl radicals by the xanthine-xanthine oxidase reaction in the presence of lactoferrin.
    Bannister JV; Bannister WH; Hill HA; Thornalley PJ
    Biochim Biophys Acta; 1982 Mar; 715(1):116-20. PubMed ID: 6280774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of porphyrins on iron-catalysed generation of hydroxyl radicals.
    Van Steveninck J; Boegheim JP; Dubbelman TM; Van der Zee J
    Biochem J; 1988 Feb; 250(1):197-201. PubMed ID: 2833235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation.
    Kuppusamy P; Zweier JL
    J Biol Chem; 1989 Jun; 264(17):9880-4. PubMed ID: 2542334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide-dependent formation of hydroxyl radicals: detection of hydroxyl radicals by the hydroxylation of aromatic compounds.
    Richmond R; Halliwell B; Chauhan J; Darbre A
    Anal Biochem; 1981 Dec; 118(2):328-35. PubMed ID: 6278984
    [No Abstract]   [Full Text] [Related]  

  • 10. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalysis of the Haber-Weiss reaction by iron-diethylenetriaminepentaacetate.
    Egan TJ; Barthakur SR; Aisen P
    J Inorg Biochem; 1992 Dec; 48(4):241-9. PubMed ID: 1336036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xanthine oxidase induced depolymerization of hyaluronic acid in the presence of ferritin.
    Carlin G; Djursäter R
    FEBS Lett; 1984 Nov; 177(1):27-30. PubMed ID: 6094241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol-induced hydroxyl radical formation and scavenger effect of thiocarbamides on hydroxyl radicals.
    Motohashi N; Mori I
    J Inorg Biochem; 1986 Mar; 26(3):205-12. PubMed ID: 3009712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction of reduced glutathione with active oxygen species generated by xanthine-oxidase-catalyzed metabolism of xanthine.
    Ross D; Cotgreave I; Moldéus P
    Biochim Biophys Acta; 1985 Sep; 841(3):278-82. PubMed ID: 2992602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of M4PO and oxygen-17 in the study on hydroxyl radical generation in the hypoxanthine-xanthine oxidase reaction.
    Mori H; Arai T; Mori K; Tsutsui H; Makino K
    Biochem Mol Biol Int; 1994 Mar; 32(3):523-9. PubMed ID: 8032319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferritin and superoxide-dependent lipid peroxidation.
    Thomas CE; Morehouse LA; Aust SD
    J Biol Chem; 1985 Mar; 260(6):3275-80. PubMed ID: 2982854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of cobalt(II) and iron(II) hydroxyl and superoxide free radical formation.
    Kadiiska MB; Maples KR; Mason RP
    Arch Biochem Biophys; 1989 Nov; 275(1):98-111. PubMed ID: 2554814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Participation of iron in OH-radical formation in a system generating a superoxide anion-radical].
    Osipov AN; Savov VM; Zubarev VE; Azizova OA; Vladimirov IuA
    Biofizika; 1981; 26(2):193-7. PubMed ID: 6266504
    [No Abstract]   [Full Text] [Related]  

  • 19. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts.
    Halliwell B; Gutteridge JM
    Arch Biochem Biophys; 1986 May; 246(2):501-14. PubMed ID: 3010861
    [No Abstract]   [Full Text] [Related]  

  • 20. [EPR spin trapping of reactive oxygen products of the respiratory burst of phagocytes (use of EPR spectroscopy in biology and medicine. II)].
    Reguli J; Duraćková Z; Pogády J; Martisová D; Stasko A
    Bratisl Lek Listy; 1992 Nov; 93(11):557-67. PubMed ID: 1337860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.