These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 6305906)
1. Nitrogen fixation and ammonia switch-off in the photosynthetic bacterium Rhodopseudomonas viridis. Howard KS; Hales BJ; Socolofsky MD J Bacteriol; 1983 Jul; 155(1):107-12. PubMed ID: 6305906 [TBL] [Abstract][Full Text] [Related]
2. Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. Madigan M; Cox SS; Stegeman RA J Bacteriol; 1984 Jan; 157(1):73-8. PubMed ID: 6581158 [TBL] [Abstract][Full Text] [Related]
3. Regulatory properties of the nitrogenase from Rhodopseudomonas palustris. Zumft WG; Castillo F Arch Microbiol; 1978 Apr; 117(1):53-60. PubMed ID: 678011 [TBL] [Abstract][Full Text] [Related]
4. H2 metabolism in photosynthetic bacteria and relationship to N2 fixation. Willison JC; Jouanneau Y; Colbeau A; Vignais PM Ann Microbiol (Paris); 1983; 134B(1):115-35. PubMed ID: 6139053 [TBL] [Abstract][Full Text] [Related]
5. H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. Hillmer P; Gest H J Bacteriol; 1977 Feb; 129(2):732-9. PubMed ID: 838686 [TBL] [Abstract][Full Text] [Related]
6. Regulation of nitrogenase synthesis in intact cells of Rhodospirillum rubrum: inactivation of nitrogen fixation by ammonia, L-glutamine and L-asparagine. Neilson AH; Nordlund S J Gen Microbiol; 1975 Nov; 91(1):53-62. PubMed ID: 811763 [TBL] [Abstract][Full Text] [Related]
7. Cyanide reduction by nitrogenase in intact cells of Rhodopseudomonas gelatinose Molisch. Materassi R; Balloni W; Florenzano G Zentralbl Bakteriol Parasitenkd Infektionskr Hyg; 1977; 132(5-6):413-7. PubMed ID: 602470 [TBL] [Abstract][Full Text] [Related]
8. Manganese, an essential trace element for N2 fixation by Rhodospirillum rubrum and Rhodopseudomonas capsulata: role in nitrogenase regulation. Yoch DC J Bacteriol; 1979 Dec; 140(3):987-95. PubMed ID: 42641 [TBL] [Abstract][Full Text] [Related]
9. Overproduction of nitrogenase by nitrogen-limited cultures of Rhodopseudomonas palustris. Arp DJ; Zumft WG J Bacteriol; 1983 Mar; 153(3):1322-30. PubMed ID: 6402491 [TBL] [Abstract][Full Text] [Related]
10. Characterizing the Interplay of Rubisco and Nitrogenase Enzymes in Anaerobic-Photoheterotrophically Grown Rhodopseudomonas palustris CGA009 through a Genome-Scale Metabolic and Expression Model. Chowdhury NB; Alsiyabi A; Saha R Microbiol Spectr; 2022 Aug; 10(4):e0146322. PubMed ID: 35730964 [TBL] [Abstract][Full Text] [Related]
17. Nitrogen fixation in Rhodopseudomonas palustris co-cultured with Bacillus subtilis in the presence of air. Arashida H; Kugenuma T; Watanabe M; Maeda I J Biosci Bioeng; 2019 May; 127(5):589-593. PubMed ID: 30392964 [TBL] [Abstract][Full Text] [Related]
18. Two forms of nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum. Carithers RP; Yoch DC; Arnon DI J Bacteriol; 1979 Feb; 137(2):779-89. PubMed ID: 106042 [TBL] [Abstract][Full Text] [Related]
19. Evolving a New Electron Transfer Pathway for Nitrogen Fixation Uncovers an Electron Bifurcating-Like Enzyme Involved in Anaerobic Aromatic Compound Degradation. Lewis NM; Sarne A; Fixen KR mBio; 2023 Feb; 14(1):e0288122. PubMed ID: 36645294 [TBL] [Abstract][Full Text] [Related]
20. Redirection of metabolism for biological hydrogen production. Rey FE; Heiniger EK; Harwood CS Appl Environ Microbiol; 2007 Mar; 73(5):1665-71. PubMed ID: 17220249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]