These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 6306551)

  • 21. Divalent cation selectivity for external block of voltage-dependent Na+ channels prolonged by batrachotoxin. Zn2+ induces discrete substates in cardiac Na+ channels.
    Ravindran A; Schild L; Moczydlowski E
    J Gen Physiol; 1991 Jan; 97(1):89-115. PubMed ID: 1848885
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrical activity and cytosolic calcium regulate levels of tetrodotoxin-sensitive sodium channels in cultured rat muscle cells.
    Sherman SJ; Catterall WA
    Proc Natl Acad Sci U S A; 1984 Jan; 81(1):262-6. PubMed ID: 6320167
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Use-dependent block of sodium channels in frog myelinated nerve by tetrodotoxin and saxitoxin at negative holding potentials.
    Lönnendonker U
    Biochim Biophys Acta; 1989 Oct; 985(2):153-60. PubMed ID: 2553115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tetrodotoxin-sensitive voltage-dependent Na currents recorded from Xenopus oocytes injected with mammalian cardiac muscle RNA.
    Sutton F; Davidson N; Lester HA
    Brain Res; 1988 Apr; 427(2):187-91. PubMed ID: 2454698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tetrodotoxin binding to normal depolarized frog muscle and the conductance of a single sodium channel.
    Almers W; Levinson SR
    J Physiol; 1975 May; 247(2):483-509. PubMed ID: 1080198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blockade of [3H]lysine-tetrodotoxin binding to sodium channel proteins by conotoxin GIII.
    Yanagawa Y; Abe T; Satake M
    Neurosci Lett; 1986 Feb; 64(1):7-12. PubMed ID: 2421202
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast Na+ channels in smooth muscle from pregnant rat uterus.
    Sperelakis N; Inoue Y; Ohya Y
    Can J Physiol Pharmacol; 1992 Apr; 70(4):491-500. PubMed ID: 1323377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of voltage-dependent Na+ channels identified by high-affinity receptors for tetrodotoxin and saxitoxin in rat and human brains: quantitative autoradiographic analysis.
    Mourre C; Moll C; Lombet A; Lazdunski M
    Brain Res; 1988 May; 448(1):128-39. PubMed ID: 2455581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sodium permeability of frog skeletal muscle in absence and presence of veratridine.
    McKinney LC; Ratzlaff RW
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C190-6. PubMed ID: 2435162
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification in mammalian brain of an endogenous substance with Na+ channel blocking activities similar to those of tetrodotoxin.
    Lombet A; Fosset M; Romey G; Jacomet Y; Lazdunski M
    Brain Res; 1987 Aug; 417(2):327-34. PubMed ID: 2443217
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of tetrodotoxin on the synaptic and extrasynaptic membrane in frog skeletal muscle.
    Nasledov GA; Volkov EM; Poletaev GI
    Experientia; 1982 May; 38(5):576-7. PubMed ID: 6284548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and properties of voltage-sensitive sodium channels in smooth muscle cells from pregnant rat myometrium.
    Martin C; Arnaudeau S; Jmari K; Rakotoarisoa L; Sayet I; Dacquet C; Mironneau C; Mironneau J
    Mol Pharmacol; 1990 Nov; 38(5):667-73. PubMed ID: 2172774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voltage-dependent blockade of muscle Na+ channels by guanidinium toxins.
    Moczydlowski E; Hall S; Garber SS; Strichartz GS; Miller C
    J Gen Physiol; 1984 Nov; 84(5):687-704. PubMed ID: 6096479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative changes of levels of nitrendipine Ca2+ channels, of tetrodotoxin-sensitive Na+ channels and of ouabain-sensitive (Na+ + K+)-ATPase following denervation of rat and chick skeletal muscle.
    Schmid A; Kazazoglou T; Renaud JF; Lazdunski M
    FEBS Lett; 1984 Jun; 172(1):114-8. PubMed ID: 6329821
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isochannels and blocking modes of voltage-dependent sodium channels.
    Moczydlowski E; Uehara A; Guo X; Heiny J
    Ann N Y Acad Sci; 1986; 479():269-92. PubMed ID: 2433996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Affinity labelling of the tetrodotoxin-binding component of the Na+ channel.
    Lombet A; Norman RI; Lazdunski M
    Biochem Biophys Res Commun; 1983 Jul; 114(1):126-30. PubMed ID: 6309160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in Na channel properties of frog and rat skeletal muscles induced by the AaH II toxin from the scorpion Androctonus australis.
    Duval A; Malécot CO; Pelhate M; Rochat H
    Pflugers Arch; 1989 Dec; 415(3):361-71. PubMed ID: 2560170
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purification and functional reconstitution of the voltage-sensitive sodium channel from rabbit T-tubular membranes.
    Kraner SD; Tanaka JC; Barchi RL
    J Biol Chem; 1985 May; 260(10):6341-7. PubMed ID: 2581954
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tonic and phasic guanidinium toxin-block of skeletal muscle Na channels expressed in Mammalian cells.
    Moran O; Picollo A; Conti F
    Biophys J; 2003 May; 84(5):2999-3006. PubMed ID: 12719231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding of tetrodotoxin and saxitoxin to Na+ channels at different holding potentials: fluctuation measurements in frog myelinated nerve.
    Lönnendonker U
    Biochim Biophys Acta; 1989 Oct; 985(2):161-7. PubMed ID: 2553116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.