These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 6307298)

  • 41. The oxidation of cytochrome c peroxidase by hydrogen peroxide. Characterization of products.
    Erman JE; Yonetani T
    Biochim Biophys Acta; 1975 Jun; 393(2):343-9. PubMed ID: 238608
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A mechanism for NADPH inhibition of catalase compound II formation.
    Hillar A; Nicholls P
    FEBS Lett; 1992 Dec; 314(2):179-82. PubMed ID: 1459249
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Activation by ATP of calcium-dependent NADPH-oxidase generating hydrogen peroxide in thyroid plasma membranes.
    Nakamura Y; Ogihara S; Ohtaki S
    J Biochem; 1987 Nov; 102(5):1121-32. PubMed ID: 3125160
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design of a cytochrome P450BM3 reaction system linked by two-step cofactor regeneration catalyzed by a soluble transhydrogenase and glycerol dehydrogenase.
    Mouri T; Shimizu T; Kamiya N; Goto M; Ichinose H
    Biotechnol Prog; 2009; 25(5):1372-8. PubMed ID: 19725101
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inhibition of lipid peroxidation by heme-nonapeptide derived from cytochrome c.
    Vodnyánszky L; Marton A; Venekei I; Végh M; Blázovits A; Kittel A; Horváth I
    Biochim Biophys Acta; 1985 Jul; 835(2):411-4. PubMed ID: 2988642
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lucigenin as a substrate of microsomal NAD(P)H-oxidoreductases.
    Schepetkin IA
    Biochemistry (Mosc); 1999 Jan; 64(1):25-32. PubMed ID: 9986909
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NAD kinase levels control the NADPH concentration in human cells.
    Pollak N; Niere M; Ziegler M
    J Biol Chem; 2007 Nov; 282(46):33562-33571. PubMed ID: 17855339
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanism of HRP-catalyzed nitrite oxidation by H
    Samuni A; Maimon E; Goldstein S
    Free Radic Biol Med; 2017 Jul; 108():832-839. PubMed ID: 28495446
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formation of long-lived radicals on proteins by radical transfer from heme enzymes--a common process?
    Ostdal H; Andersen HJ; Davies MJ
    Arch Biochem Biophys; 1999 Feb; 362(1):105-12. PubMed ID: 9917334
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of active oxygen species in the photodestruction of microsomal cytochrome P-450 and associated monooxygenases by hematoporphyrin derivative in rats.
    Das M; Dixit R; Mukhtar H; Bickers DR
    Cancer Res; 1985 Feb; 45(2):608-15. PubMed ID: 2981610
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cytochrome c-crown ether complexes as supramolecular catalysts: cold-active synzymes for asymmetric sulfoxide oxidation in methanol.
    Suzumura A; Paul D; Sugimoto H; Shinoda S; Julian RR; Beauchamp JL; Teraoka J; Tsukube H
    Inorg Chem; 2005 Feb; 44(4):904-10. PubMed ID: 15859267
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase.
    Rusche KM; Spiering MM; Marletta MA
    Biochemistry; 1998 Nov; 37(44):15503-12. PubMed ID: 9799513
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reactions of pyridine coenzyme dimers and monomers with viologens.
    el-Sherbini el-S ; Finazzi-Agrò A; Tortorella S; Casini A
    Arch Biochem Biophys; 1998 Jun; 354(1):65-72. PubMed ID: 9633599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of in vitro heme-induced LDL oxidation: effects of antioxidants.
    Klouche K; Morena M; Canaud B; Descomps B; Beraud JJ; Cristol JP
    Eur J Clin Invest; 2004 Sep; 34(9):619-25. PubMed ID: 15379761
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide.
    Nagababu E; Rifkind JM
    Biochem Biophys Res Commun; 1998 Jun; 247(3):592-6. PubMed ID: 9647738
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generation of reactive oxygen intermediates by human liver microsomes in the presence of NADPH or NADH.
    Rashba-Step J; Cederbaum AI
    Mol Pharmacol; 1994 Jan; 45(1):150-7. PubMed ID: 8302274
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Oxidation of dibenzothiophene catalyzed by heme-containing enzymes encapsulated in sol-gel glass. A new form of biocatalysts.
    Wu S; Lin J; Chan SI
    Appl Biochem Biotechnol; 1994 Apr; 47(1):11-20. PubMed ID: 8203869
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry.
    Kirkman HN; Rolfo M; Ferraris AM; Gaetani GF
    J Biol Chem; 1999 May; 274(20):13908-14. PubMed ID: 10318800
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photochemical and enzymatic redox transformations of reduced forms of coenzyme NADP+.
    Czochralska B; Bojarska E; Pawlicki K; Shugar D
    Photochem Photobiol; 1990 Apr; 51(4):401-10. PubMed ID: 2343059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.