These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 6307981)

  • 41. Inhibition of peptidoglycan biosynthesis in Bacillus megaterium by daptomycin.
    Mengin-Lecreulx D; Allen NE; Hobbs JN; van Heijenoort J
    FEMS Microbiol Lett; 1990 Jun; 57(3):245-8. PubMed ID: 2170230
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variations in UDP-N-acetylglucosamine and UDP-N-acetylmuramyl-pentapeptide pools in Escherichia coli after inhibition of protein synthesis.
    Mengin-Lecreulx D; Siegel E; van Heijenoort J
    J Bacteriol; 1989 Jun; 171(6):3282-7. PubMed ID: 2656647
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Purification and characterization of the bacterial MraY translocase catalyzing the first membrane step of peptidoglycan biosynthesis.
    Bouhss A; Crouvoisier M; Blanot D; Mengin-Lecreulx D
    J Biol Chem; 2004 Jul; 279(29):29974-80. PubMed ID: 15131133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biosynthesis of peptidoglycan in Gaffkya homari. The mode of action of penicillin G and mecillinam.
    Hammes WP
    Eur J Biochem; 1976 Nov; 70(1):107-13. PubMed ID: 12941
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Autolysins and shape change in rodA mutants of Bacillus subtilis.
    Rogers HJ; Taylor C
    J Bacteriol; 1978 Sep; 135(3):1032-42. PubMed ID: 29031
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bacillus subtilis uses the SigM signaling pathway to prioritize the use of its lipid carrier for cell wall synthesis.
    Roney IJ; Rudner DZ
    PLoS Biol; 2024 Apr; 22(4):e3002589. PubMed ID: 38683856
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A metabolic checkpoint protein GlmR is important for diverting carbon into peptidoglycan biosynthesis in Bacillus subtilis.
    Patel V; Wu Q; Chandrangsu P; Helmann JD
    PLoS Genet; 2018 Sep; 14(9):e1007689. PubMed ID: 30248093
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Passage of a membrane protein through the walls of toluene-treated Bacillus megaterium cells.
    Fan DP; Gardner-Eckstrom GL
    J Bacteriol; 1975 Aug; 123(2):717-23. PubMed ID: 807564
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reversal of the vancomycin inhibition of peptidoglycan synthesis by cell walls.
    Sinha RK; Neuhaus RC
    J Bacteriol; 1968 Aug; 96(2):374-82. PubMed ID: 5674051
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure of the linkage units between ribitol teichoic acids and peptidoglycan.
    Kojima N; Araki Y; Ito E
    J Bacteriol; 1985 Jan; 161(1):299-306. PubMed ID: 3918002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibitory protein controls the reversion of protoplasts and L forms of Bacillus subtilis to the walled state.
    DeCastro-Costa MR; Landman OE
    J Bacteriol; 1977 Feb; 129(2):678-89. PubMed ID: 402356
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biosynthesis of linkage units for teichoic acids in gram-positive bacteria: distribution of related enzymes and their specificities for UDP-sugars and lipid-linked intermediates.
    Yokoyama K; Mizuguchi H; Araki Y; Kaya S; Ito E
    J Bacteriol; 1989 Feb; 171(2):940-6. PubMed ID: 2914877
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Control of synthesis of wall teichoic acid during balanced growth of Bacillus subtilis W23.
    Cheah SC; Hussey H; Hancock I; Baddiley J
    J Gen Microbiol; 1982 Mar; 128(3):593-9. PubMed ID: 6281365
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cytoplasmic steps of peptidoglycan biosynthesis.
    Barreteau H; Kovac A; Boniface A; Sova M; Gobec S; Blanot D
    FEMS Microbiol Rev; 2008 Mar; 32(2):168-207. PubMed ID: 18266853
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amphomycin inhibits phospho-N-acetylmuramyl-pentapeptide translocase in peptidoglycan synthesis of Bacillus.
    Tanaka H; Oiwa R; Matsukura S; Omura S
    Biochem Biophys Res Commun; 1979 Feb; 86(3):902-8. PubMed ID: 106855
    [No Abstract]   [Full Text] [Related]  

  • 56. D-alanine incorporation into macromolecules and effects of D-alanine deprivation on active transport in Bacillus subtilis.
    Clark VL; Young FE
    J Bacteriol; 1978 Mar; 133(3):1339-50. PubMed ID: 417065
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biosynthesis of peptidoglycan in Gaffkya homari: role of the peptide subunit of uridine diphosphate-N-acetylmuramyl-pentapeptide.
    Hammes WP; Neuhaus FC
    J Bacteriol; 1974 Oct; 120(1):210-8. PubMed ID: 4425467
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relation between cell wall turnover and cell growth in Bacillus subtilis.
    Glaser L; Lindsay B
    J Bacteriol; 1977 May; 130(2):610-9. PubMed ID: 45485
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Initial membrane reaction in peptidoglycan synthesis. Interaction of lipid with phospho-N-acetylmuramyl-pentapeptide translocase.
    Weppner WA; Neuhaus FC
    Biochim Biophys Acta; 1979 Apr; 552(3):418-27. PubMed ID: 444511
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cell wall metabolism in Bacillus subtilis subsp. niger: accumulation of wall polymers in the supernatant of chemostat cultures.
    de Boer W; Kruyssen FJ; Wouters JT
    J Bacteriol; 1981 Jun; 146(3):877-84. PubMed ID: 6787016
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.