BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 6308071)

  • 1. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. II. DCMD and TCG interneurons.
    Arbas EA
    J Comp Neurol; 1983 Jun; 216(4):381-9. PubMed ID: 6308071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells.
    Arbas EA
    J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presynaptic terminals persist following degeneration of "flight" muscle during development of a flightless grasshopper.
    Arbas EA; Tolbert LP
    J Neurobiol; 1986 Nov; 17(6):627-36. PubMed ID: 3794689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural correlates to flight-related density-dependent phase characteristics in locusts.
    Fuchs E; Kutsch W; Ayali A
    J Neurobiol; 2003 Nov; 57(2):152-62. PubMed ID: 14556281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thoracic morphology of a flightless mexican grasshopper, Barytettix psolus: Comparison with the locust, Schistocerca gregaria.
    Arbas EA
    J Morphol; 1983 May; 176(2):141-153. PubMed ID: 30075618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interneurons in the flight system of the locust: distribution, connections, and resetting properties.
    Robertson RM; Pearson KG
    J Comp Neurol; 1983 Mar; 215(1):33-50. PubMed ID: 6853764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Habituated visual neurons in locusts remain sensitive to novel looming objects.
    Gray JR
    J Exp Biol; 2005 Jul; 208(Pt 13):2515-32. PubMed ID: 15961738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation.
    Büschges A; Ramirez JM; Driesang R; Pearson KG
    J Neurobiol; 1992 Feb; 23(1):44-60. PubMed ID: 1373440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurophysiological studies of flight-related density-dependent phase characteristics in locusts.
    Ayali A; Fuchs E; Kutsch W
    Acta Biol Hung; 2004; 55(1-4):137-41. PubMed ID: 15270227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dorsal, unpaired, median neurons of the locust metathoracic ganglion.
    Hoyle G
    J Neurobiol; 1978 Jan; 9(1):43-57. PubMed ID: 632816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of synaptic connections in sensory-motor pathways of the adult locust flight system.
    Wolf H; Büschges A
    J Neurophysiol; 1997 Sep; 78(3):1276-84. PubMed ID: 9310419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamatergic central nervous transmission in locusts.
    Sombati S; Hoyle G
    J Neurobiol; 1984 Nov; 15(6):507-16. PubMed ID: 6097646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous properties of segmentally homologous interneurons in the ventral nerve cord of locusts.
    Pearson KG; Boyan GS; Bastiani M; Goodman CS
    J Comp Neurol; 1985 Mar; 233(1):133-45. PubMed ID: 3980770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between the receptive fields of locust interneurons, their dendritic morphology, and the central projections of mechanosensory neurons.
    Burrows M; Newland PL
    J Comp Neurol; 1993 Mar; 329(3):412-26. PubMed ID: 8459052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A muscarinic cholinergic mechanism underlies activation of the central pattern generator for locust flight.
    Buhl E; Schildberger K; Stevenson PA
    J Exp Biol; 2008 Jul; 211(Pt 14):2346-57. PubMed ID: 18587129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common synaptic drive to segmentally homologous interneurons in the locust.
    Boyan G
    J Comp Neurol; 1992 Jul; 321(4):544-54. PubMed ID: 1506484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The morphology of two groups of spiking local interneurons in the metathoracic ganglion of the locust.
    Siegler MV; Burrows M
    J Comp Neurol; 1984 Apr; 224(4):463-82. PubMed ID: 6327779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identified octopaminergic neurons provide an arousal mechanism in the locust brain.
    Bacon JP; Thompson KS; Stern M
    J Neurophysiol; 1995 Dec; 74(6):2739-43. PubMed ID: 8747228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural circuits in the flight system of the locust.
    Robertson RM; Pearson KG
    J Neurophysiol; 1985 Jan; 53(1):110-28. PubMed ID: 2983035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera.
    Römer H; Marquart V; Hardt M
    J Comp Neurol; 1988 Sep; 275(2):201-15. PubMed ID: 3220974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.