These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 6308419)

  • 1. [Formation of cruciform structures in pAO3 plasmid DNA on increasing superhelical density].
    Paniutin IG; Liamichev VI; Liubchenko IuL
    Mol Biol (Mosk); 1983; 17(3):667-77. PubMed ID: 6308419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The absence of cruciform structures from pAO3 plasmid DNA in vivo.
    Lyamichev V; Panyutin I; Mirkin S
    J Biomol Struct Dyn; 1984 Oct; 2(2):291-301. PubMed ID: 6401131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA.
    Panyutin I; Klishko V; Lyamichev V
    J Biomol Struct Dyn; 1984 Jun; 1(6):1311-24. PubMed ID: 6400822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural transition in d(AT)n.d(AT)n inserts within superhelical DNA.
    Panyutin I; Lyamichev V; Mirkin S
    J Biomol Struct Dyn; 1985 Jun; 2(6):1221-34. PubMed ID: 3917182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pH-dependent structural transition in the homopurine-homopyrimidine tract in superhelical DNA.
    Lyamichev VI; Mirkin SM; Frank-Kamenetskii MD
    J Biomol Struct Dyn; 1985 Oct; 3(2):327-38. PubMed ID: 3917024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Length-dependent cruciform extrusion in d(GTAC)n sequences.
    Naylor LH; Yee HA; van de Sande JH
    J Biomol Struct Dyn; 1988 Feb; 5(4):895-912. PubMed ID: 3271495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between superhelical density and cruciform formation in plasmid pVH51.
    Singleton CK; Wells RD
    J Biol Chem; 1982 Jun; 257(11):6292-5. PubMed ID: 6281266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two superhelix density-dependent DNA transitions detected by changes in DNA adsorption/desorption behavior.
    Fojta M; Bowater RP; Stanková V; Havran L; Lilley DM; Palecek E
    Biochemistry; 1998 Apr; 37(14):4853-62. PubMed ID: 9538002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of global DNA topology on cruciform formation in supercoiled DNA.
    Oussatcheva EA; Pavlicek J; Sankey OF; Sinden RR; Lyubchenko YL; Potaman VN
    J Mol Biol; 2004 May; 338(4):735-43. PubMed ID: 15099741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sharp structural transition in pA03 plasmid DNA caused by increased superhelix density.
    Panyutin IG; Lyamichev VI; Lyubchenko YuL
    FEBS Lett; 1982 Nov; 148(2):297-301. PubMed ID: 6295808
    [No Abstract]   [Full Text] [Related]  

  • 11. Negative supercoiling and nucleosome cores. I. The effect of negative supercoiling on the efficiency of nucleosome core formation in vitro.
    Patterton HG; von Holt C
    J Mol Biol; 1993 Feb; 229(3):623-36. PubMed ID: 8433363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The action of S1 nuclease and a cloning strategy for microcircular DNAs].
    Bai YL; Yang ZL; Qiao MQ; Zhang XM; Zhou J; Gao CC
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):240-3. PubMed ID: 15966330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of the ColE1 cruciform. Comparisons between probing and topological experiments using single topoisomers.
    Lilley DM; Hallam LR
    J Mol Biol; 1984 Nov; 180(1):179-200. PubMed ID: 6096558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of magnesium on cruciform extrusion in supercoiled DNA.
    Vologodskaia MY; Vologodskii AV
    J Mol Biol; 1999 Jun; 289(4):851-9. PubMed ID: 10369766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of chemical and enzymatic cleavage frequencies in supercoiled DNA.
    Tsen H; Levene SD
    J Mol Biol; 2004 Mar; 336(5):1087-102. PubMed ID: 15037071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic adduct formation at structural perturbations in supercoiled DNA molecules.
    Lilley DM
    IARC Sci Publ; 1986; (70):83-99. PubMed ID: 3793194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A synthetic block copolymer regulates S1 nuclease fragmentation of supercoiled plasmid DNA.
    Osada K; Yamasaki Y; Katayose S; Kataoka K
    Angew Chem Int Ed Engl; 2005 Jun; 44(23):3544-8. PubMed ID: 15880738
    [No Abstract]   [Full Text] [Related]  

  • 18. DNA H form requires a homopurine-homopyrimidine mirror repeat.
    Mirkin SM; Lyamichev VI; Drushlyak KN; Dobrynin VN; Filippov SA; Frank-Kamenetskii MD
    Nature; 1987 Dec 3-9; 330(6147):495-7. PubMed ID: 2825028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific chemical modification of B-Z junctions in supercoiled DNA as detected by nuclease S1 digestion, inhibition of restriction cleavage and nucleotide sequencing.
    Nejedlý K; Matyásek R; Palecek E
    J Biomol Struct Dyn; 1988 Oct; 6(2):261-75. PubMed ID: 3271523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel unusual DNA structure formed in an inverted repeat sequence.
    Kato M; Matsunaga K; Shimizu N
    Biochem Biophys Res Commun; 1998 May; 246(2):532-4. PubMed ID: 9610396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.