BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 6308419)

  • 1. [Formation of cruciform structures in pAO3 plasmid DNA on increasing superhelical density].
    Paniutin IG; Liamichev VI; Liubchenko IuL
    Mol Biol (Mosk); 1983; 17(3):667-77. PubMed ID: 6308419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The absence of cruciform structures from pAO3 plasmid DNA in vivo.
    Lyamichev V; Panyutin I; Mirkin S
    J Biomol Struct Dyn; 1984 Oct; 2(2):291-301. PubMed ID: 6401131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA.
    Panyutin I; Klishko V; Lyamichev V
    J Biomol Struct Dyn; 1984 Jun; 1(6):1311-24. PubMed ID: 6400822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structural transition in d(AT)n.d(AT)n inserts within superhelical DNA.
    Panyutin I; Lyamichev V; Mirkin S
    J Biomol Struct Dyn; 1985 Jun; 2(6):1221-34. PubMed ID: 3917182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pH-dependent structural transition in the homopurine-homopyrimidine tract in superhelical DNA.
    Lyamichev VI; Mirkin SM; Frank-Kamenetskii MD
    J Biomol Struct Dyn; 1985 Oct; 3(2):327-38. PubMed ID: 3917024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Length-dependent cruciform extrusion in d(GTAC)n sequences.
    Naylor LH; Yee HA; van de Sande JH
    J Biomol Struct Dyn; 1988 Feb; 5(4):895-912. PubMed ID: 3271495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between superhelical density and cruciform formation in plasmid pVH51.
    Singleton CK; Wells RD
    J Biol Chem; 1982 Jun; 257(11):6292-5. PubMed ID: 6281266
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two superhelix density-dependent DNA transitions detected by changes in DNA adsorption/desorption behavior.
    Fojta M; Bowater RP; Stanková V; Havran L; Lilley DM; Palecek E
    Biochemistry; 1998 Apr; 37(14):4853-62. PubMed ID: 9538002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of global DNA topology on cruciform formation in supercoiled DNA.
    Oussatcheva EA; Pavlicek J; Sankey OF; Sinden RR; Lyubchenko YL; Potaman VN
    J Mol Biol; 2004 May; 338(4):735-43. PubMed ID: 15099741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sharp structural transition in pA03 plasmid DNA caused by increased superhelix density.
    Panyutin IG; Lyamichev VI; Lyubchenko YuL
    FEBS Lett; 1982 Nov; 148(2):297-301. PubMed ID: 6295808
    [No Abstract]   [Full Text] [Related]  

  • 11. Negative supercoiling and nucleosome cores. I. The effect of negative supercoiling on the efficiency of nucleosome core formation in vitro.
    Patterton HG; von Holt C
    J Mol Biol; 1993 Feb; 229(3):623-36. PubMed ID: 8433363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The action of S1 nuclease and a cloning strategy for microcircular DNAs].
    Bai YL; Yang ZL; Qiao MQ; Zhang XM; Zhou J; Gao CC
    Sheng Wu Gong Cheng Xue Bao; 2003 Mar; 19(2):240-3. PubMed ID: 15966330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of the ColE1 cruciform. Comparisons between probing and topological experiments using single topoisomers.
    Lilley DM; Hallam LR
    J Mol Biol; 1984 Nov; 180(1):179-200. PubMed ID: 6096558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of magnesium on cruciform extrusion in supercoiled DNA.
    Vologodskaia MY; Vologodskii AV
    J Mol Biol; 1999 Jun; 289(4):851-9. PubMed ID: 10369766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of chemical and enzymatic cleavage frequencies in supercoiled DNA.
    Tsen H; Levene SD
    J Mol Biol; 2004 Mar; 336(5):1087-102. PubMed ID: 15037071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic adduct formation at structural perturbations in supercoiled DNA molecules.
    Lilley DM
    IARC Sci Publ; 1986; (70):83-99. PubMed ID: 3793194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A synthetic block copolymer regulates S1 nuclease fragmentation of supercoiled plasmid DNA.
    Osada K; Yamasaki Y; Katayose S; Kataoka K
    Angew Chem Int Ed Engl; 2005 Jun; 44(23):3544-8. PubMed ID: 15880738
    [No Abstract]   [Full Text] [Related]  

  • 18. DNA H form requires a homopurine-homopyrimidine mirror repeat.
    Mirkin SM; Lyamichev VI; Drushlyak KN; Dobrynin VN; Filippov SA; Frank-Kamenetskii MD
    Nature; 1987 Dec 3-9; 330(6147):495-7. PubMed ID: 2825028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific chemical modification of B-Z junctions in supercoiled DNA as detected by nuclease S1 digestion, inhibition of restriction cleavage and nucleotide sequencing.
    Nejedlý K; Matyásek R; Palecek E
    J Biomol Struct Dyn; 1988 Oct; 6(2):261-75. PubMed ID: 3271523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel unusual DNA structure formed in an inverted repeat sequence.
    Kato M; Matsunaga K; Shimizu N
    Biochem Biophys Res Commun; 1998 May; 246(2):532-4. PubMed ID: 9610396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.