BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 6308509)

  • 1. Benzodiazepine receptors in rat cerebral cortex and hippocampus undergo rapid and reversible changes after acute stress.
    Medina JH; Novas ML; Wolfman CN; Levi de Stein M; De Robertis E
    Neuroscience; 1983 Jun; 9(2):331-5. PubMed ID: 6308509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in benzodiazepine receptors by acute stress: different effect of chronic diazepam or RO 15-1788 treatment.
    Medina JH; Novas ML; De Robertis E
    Eur J Pharmacol; 1983 Dec; 96(3-4):181-5. PubMed ID: 6327328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic RO 15-1788 treatment increases the number of benzodiazepine receptors in rat cerebral cortex and hippocampus.
    Medina JH; Novas ML; De Robertis E
    Eur J Pharmacol; 1983 May; 90(1):125-8. PubMed ID: 6307717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [3H]Propyl beta-carboline-3-carboxylate as a selective radioligand for the BZ1 benzodiazepine receptor subclass.
    Braestrup C; Nielsen M
    J Neurochem; 1981 Aug; 37(2):333-41. PubMed ID: 6267199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo and in vitro modulation of central type benzodiazepine receptors by phosphatidylserine.
    Levi de Stein M; Medina JH; De Robertis E
    Brain Res Mol Brain Res; 1989 Jan; 5(1):9-15. PubMed ID: 2538706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholinergic muscarinic receptors in rat cerebral cortex, basal ganglia and cerebellum undergo rapid and reversible changes after acute stress.
    Estévez EE; Jerusalinsky D; Medina JH; De Robertis E
    Neuroscience; 1984 Dec; 13(4):1353-7. PubMed ID: 6527794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereoisomeric tetrahydro-beta-carbolines differ in their interaction with rat brain benzodiazepine receptors.
    Locock AR; Baker GB; Micetich RG; Coutts RT
    Prog Neuropsychopharmacol Biol Psychiatry; 1983; 7(4-6):808-12. PubMed ID: 6320306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effect of gamma-aminobutyric acid on benzodiazepine receptor subtypes labeled by [3H]propyl beta-carboline-3-carboxylate in rat brain.
    Gee KW; Ehlert FJ; Yamamura HI
    J Pharmacol Exp Ther; 1983 Apr; 225(1):132-7. PubMed ID: 6300371
    [No Abstract]   [Full Text] [Related]  

  • 9. Autoradiographic localization of [3H]zolpidem binding sites in the rat CNS: comparison with the distribution of [3H]flunitrazepam binding sites.
    Niddam R; Dubois A; Scatton B; Arbilla S; Langer SZ
    J Neurochem; 1987 Sep; 49(3):890-9. PubMed ID: 3039057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic exposure to Ro 15-1788: differential effect on flunitrazepam binding to cortex and hippocampus.
    Urbancic M; Marczynski TJ
    Eur J Pharmacol; 1989 Nov; 171(1):1-7. PubMed ID: 2515067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anion regulation of agonist and inverse agonist binding to benzodiazepine receptors.
    Evoniuk G; Skolnick P
    J Neurochem; 1988 Oct; 51(4):1169-75. PubMed ID: 2458432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-protection action of beta-phenyl(GABA): involvement of central and peripheral type benzodiazepine binding sites.
    Rägo L; Kiivet RA; Adojaan A; Harro J; Allikmets L
    Pharmacol Toxicol; 1990 Jan; 66(1):41-4. PubMed ID: 2155416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic benzodiazepine antagonist treatment and its withdrawal upregulates components of GABA-benzodiazepine receptor ionophore complex in cerebral cortex of rat.
    Kulkarni SK; Ticku MK
    Brain Res; 1990 Jun; 519(1-2):6-11. PubMed ID: 2168788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid, stress-induced modification of the benzodiazepine receptor-coupled chloride ionophore.
    Havoundjian H; Paul SM; Skolnick P
    Brain Res; 1986 Jun; 375(2):401-6. PubMed ID: 3015336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain benzodiazepine receptors increase after chronic ethyl-beta-carboline-3-carboxylate.
    Concas A; Salis M; Biggio G
    Life Sci; 1983 Mar; 32(11):1175-82. PubMed ID: 6300577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the solubilized GABA and benzodiazepine receptors from various regions of bovine brain.
    Asano T; Yamada Y; Ogasawara N
    J Neurochem; 1983 Jan; 40(1):209-14. PubMed ID: 6294247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased binding of [3H]muscimol and [3H]flunitrazepam in the rat brain under hypoxia.
    Ninomiya H; Taniguchi T; Kameyama M; Fujiwara M
    J Neurochem; 1988 Oct; 51(4):1111-7. PubMed ID: 2843604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional heterogeneity of benzodiazepine binding sites in rat brain.
    Stapleton SR; Prestwich SA; Horton RW
    Eur J Pharmacol; 1982 Oct; 84(3-4):221-4. PubMed ID: 6293849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacologic characterization of GABAA/benzodiazepine receptor in rat hippocampus during aging.
    Ruano D; Cano J; Machado A; Vitorica J
    J Pharmacol Exp Ther; 1991 Mar; 256(3):902-8. PubMed ID: 1848632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of GABA and benzodiazepine antagonists on [3H]flunitrazepam binding to cerebral cortical membrane.
    Fong J; Okada K; Lew JY; Goldstein M
    Brain Res; 1983 Apr; 266(1):152-4. PubMed ID: 6133589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.