These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 6308623)
1. Yeast recombination: the association between double-strand gap repair and crossing-over. Orr-Weaver TL; Szostak JW Proc Natl Acad Sci U S A; 1983 Jul; 80(14):4417-21. PubMed ID: 6308623 [TBL] [Abstract][Full Text] [Related]
2. The double-strand-break repair model for recombination. Szostak JW; Orr-Weaver TL; Rothstein RJ; Stahl FW Cell; 1983 May; 33(1):25-35. PubMed ID: 6380756 [TBL] [Abstract][Full Text] [Related]
3. Induction of recombination between homologous and diverged DNAs by double-strand gaps and breaks and role of mismatch repair. Priebe SD; Westmoreland J; Nilsson-Tillgren T; Resnick MA Mol Cell Biol; 1994 Jul; 14(7):4802-14. PubMed ID: 8007979 [TBL] [Abstract][Full Text] [Related]
4. Influence of non-homology between recombining DNA sequences on double-strand break repair in Saccharomyces cerevisiae. Glasunov A; Frankenberg-Schwager M; Frankenberg D Mol Gen Genet; 1995 Apr; 247(1):55-60. PubMed ID: 7715604 [TBL] [Abstract][Full Text] [Related]
5. [A model system for the study of repair of DNA double-strand breaks in Saccharomyces cerevisiae]. Glazunov AV; Glazer VM; Perera DR; Boreĭko AV Mol Gen Mikrobiol Virusol; 1987 Aug; (8):19-25. PubMed ID: 2825006 [TBL] [Abstract][Full Text] [Related]
6. Single strand and double strand DNA damage-induced reciprocal recombination in yeast. Dependence on nucleotide excision repair and RAD1 recombination. Saffran WA; Greenberg RB; Thaler-Scheer MS; Jones MM Nucleic Acids Res; 1994 Jul; 22(14):2823-9. PubMed ID: 8052537 [TBL] [Abstract][Full Text] [Related]
7. Genetic control of plasmid DNA double-strand gap repair in yeast, Saccharomyces cerevisiae. Glaser VM; Glasunov AV; Tevzadze GG; Perera JR; Shestakov SV Curr Genet; 1990 Jul; 18(1):1-5. PubMed ID: 2245471 [TBL] [Abstract][Full Text] [Related]
8. Molecular structures of crossover and noncrossover intermediates during gap repair in yeast: implications for recombination. Mitchel K; Zhang H; Welz-Voegele C; Jinks-Robertson S Mol Cell; 2010 Apr; 38(2):211-22. PubMed ID: 20417600 [TBL] [Abstract][Full Text] [Related]
9. Double-strand gap repair results in homologous recombination in mouse L cells. Brenner DA; Smigocki AC; Camerini-Otero RD Proc Natl Acad Sci U S A; 1986 Mar; 83(6):1762-6. PubMed ID: 3006069 [TBL] [Abstract][Full Text] [Related]
10. Alteration of gene conversion tract length and associated crossing over during plasmid gap repair in nuclease-deficient strains of Saccharomyces cerevisiae. Symington LS; Kang LE; Moreau S Nucleic Acids Res; 2000 Dec; 28(23):4649-56. PubMed ID: 11095674 [TBL] [Abstract][Full Text] [Related]
11. Xrs2 facilitates crossovers during DNA double-strand gap repair in yeast. Steininger S; Gomez-Paramio I; Braselmann H; Fellerhoff B; Dittberner D; Eckardt-Schupp F; Moertl S DNA Repair (Amst); 2008 Sep; 7(9):1563-77. PubMed ID: 18599383 [TBL] [Abstract][Full Text] [Related]
12. The RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae. Ahne F; Jha B; Eckardt-Schupp F Nucleic Acids Res; 1997 Feb; 25(4):743-9. PubMed ID: 9016623 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms for gene conversion and homologous recombination: the double-strand break repair model and the successive half crossing-over model. Kobayashi I Adv Biophys; 1992; 28():81-133. PubMed ID: 1442245 [TBL] [Abstract][Full Text] [Related]
14. DNA double-strand break repair: genetic determinants of flanking crossing-over. Kusano K; Sunohara Y; Takahashi N; Yoshikura H; Kobayashi I Proc Natl Acad Sci U S A; 1994 Feb; 91(3):1173-7. PubMed ID: 8302849 [TBL] [Abstract][Full Text] [Related]
15. Donation of information to the unbroken chromosome in double-strand break repair. Roitgrund C; Steinlauf R; Kupiec M Curr Genet; 1993; 23(5-6):414-22. PubMed ID: 8319297 [TBL] [Abstract][Full Text] [Related]
16. Gene conversion adjacent to regions of double-strand break repair. Orr-Weaver TL; Nicolas A; Szostak JW Mol Cell Biol; 1988 Dec; 8(12):5292-8. PubMed ID: 3072478 [TBL] [Abstract][Full Text] [Related]
17. Genetic applications of yeast transformation with linear and gapped plasmids. Orr-Weaver TL; Szostak JW; Rothstein RJ Methods Enzymol; 1983; 101():228-45. PubMed ID: 6310326 [TBL] [Abstract][Full Text] [Related]
18. Yeast transformation: a model system for the study of recombination. Orr-Weaver TL; Szostak JW; Rothstein RJ Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6354-8. PubMed ID: 6273866 [TBL] [Abstract][Full Text] [Related]
19. Induction of multiple plasmid recombination in Saccharomyces cerevisiae by psoralen reaction and double strand breaks. Saffran WA; Smith ED; Chan SK Nucleic Acids Res; 1991 Oct; 19(20):5681-7. PubMed ID: 1945844 [TBL] [Abstract][Full Text] [Related]
20. [Role of the RAD57 gene in the repair of double-stranded DNA gaps in the yeast Saccharomyces cerevisiae]. Glazer VM; Glazunov AV Genetika; 1997 Sep; 33(9):1221-8. PubMed ID: 9445816 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]