These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 6308694)

  • 1. Nucleus locus ceruleus: new evidence of anatomical and physiological specificity.
    Foote SL; Bloom FE; Aston-Jones G
    Physiol Rev; 1983 Jul; 63(3):844-914. PubMed ID: 6308694
    [No Abstract]   [Full Text] [Related]  

  • 2. New perspectives on the functional organization and postsynaptic influences of the locus ceruleus efferent projection system.
    Waterhouse BD; Devilbiss D; Fleischer D; Sessler FM; Simpson KL
    Adv Pharmacol; 1998; 42():749-54. PubMed ID: 9328007
    [No Abstract]   [Full Text] [Related]  

  • 3. Endorphin-mediated inhibition of locus coeruleus neurons.
    Strahlendorf HK; Strahlendorf JC; Barnes CD
    Brain Res; 1980 Jun; 191(1):284-8. PubMed ID: 6247013
    [No Abstract]   [Full Text] [Related]  

  • 4. The neuroanatomy and pharmacology of the nucleus locus coeruleus.
    Grant SJ; Redmond DE
    Prog Clin Biol Res; 1981; 71():5-27. PubMed ID: 6276901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo voltammetric evidence that locus coeruleus activation predominantly releases norepinephrine in the infralimbic cortex: Effect of acute ethanol.
    Deal AL; Mikhailova MA; Grinevich VP; Weiner JL; Gainetdinov RR; Budygin EA
    Synapse; 2019 Apr; 73(4):e22080. PubMed ID: 30447016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. beta-Endorphin-like immunoreactivity in the brain of the lizard, Lacerta muralis.
    Vallarino M
    Gen Comp Endocrinol; 1986 Oct; 64(1):52-9. PubMed ID: 2951294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The locus ceruleus norepinephrine system: functional organization and potential clinical significance.
    Benarroch EE
    Neurology; 2009 Nov; 73(20):1699-704. PubMed ID: 19917994
    [No Abstract]   [Full Text] [Related]  

  • 8. Occurrence of beta-endorphin-like immunoreactivity in the brain of the teleost, Boops boops.
    Vallarino M
    Gen Comp Endocrinol; 1985 Oct; 60(1):63-9. PubMed ID: 2932365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locus ceruleus somata contain both acetylcholin esterase and norepinephrine: direct histochemical demonstration on the same tissue section.
    Albanese A; Butcher LL
    Neurosci Lett; 1979 Sep; 14(1):101-4. PubMed ID: 530484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylcholinesterase and catecholamine distribution in the locus ceruleus of the rat.
    Albanese A; Butcher LL
    Brain Res Bull; 1980; 5(2):127-34. PubMed ID: 7378851
    [No Abstract]   [Full Text] [Related]  

  • 11. Electrophysiological analysis of opioid action in the central nervous system.
    Henderson G
    Br Med Bull; 1983 Jan; 39(1):59-64. PubMed ID: 6132650
    [No Abstract]   [Full Text] [Related]  

  • 12. Cholinesterases in single nerve cells isolated from the locus ceruleus and from nucleus of the facial nerve of the rat: a microgasometric study.
    Sket D; Pavlin R
    J Neurochem; 1985 Jul; 45(1):319-23. PubMed ID: 3998729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of tolerance to opiates in locus coeruleus neurons.
    Christie MJ; Williams JT; North RA
    NIDA Res Monogr; 1987; 78():158-68. PubMed ID: 2829019
    [No Abstract]   [Full Text] [Related]  

  • 14. Potentiation of ethanol effects in cerebellum by activation of endogenous noradrenergic inputs.
    Wang Y; Freund RK; Palmer MR
    J Pharmacol Exp Ther; 1999 Jan; 288(1):211-20. PubMed ID: 9862773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endorphins, opiate receptors and their evolving biology.
    Smith JR; Simon EJ
    Pathobiol Annu; 1981; 11():87-126. PubMed ID: 6120498
    [No Abstract]   [Full Text] [Related]  

  • 16. Opioid-glutamate interactions in rat locus coeruleus neurons.
    Oleskevich S; Clements JD; Williams JT
    J Neurophysiol; 1993 Sep; 70(3):931-7. PubMed ID: 7693886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) [but not D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP)] produces a nonopioid receptor-mediated increase in K+ conductance of rat locus ceruleus neurons.
    Chieng B; Connor M; Christie MJ
    Mol Pharmacol; 1996 Sep; 50(3):650-5. PubMed ID: 8794906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroanatomical sites of action of clonidine in opiate withdrawal: the locus coeruleus connection.
    Gold MS; Pottash AC; Extein IL; Kleber HD
    Prog Clin Biol Res; 1981; 71():285-98. PubMed ID: 6276897
    [No Abstract]   [Full Text] [Related]  

  • 19. Failure to block responses of locus coeruleus neurons to somatosensory stimuli by destruction of two major afferent nuclei.
    Rasmussen K; Aghajanian GK
    Synapse; 1989; 4(2):162-4. PubMed ID: 2781467
    [No Abstract]   [Full Text] [Related]  

  • 20. Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: pharmacological evidence of noradrenergic central inhibition.
    Hoffer BJ; Siggins GR; Oliver AP; Bloom FE
    J Pharmacol Exp Ther; 1973 Mar; 184(3):553-69. PubMed ID: 4347049
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.