These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 6309280)

  • 1. Impaired granulocyte superoxide production and prolongation of the respiratory burst due to a low-affinity NADPH-dependent oxidase.
    Shurin SB; Cohen HJ; Whitin JC; Newburger PE
    Blood; 1983 Sep; 62(3):564-71. PubMed ID: 6309280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defect in pyridine nucleotide dependent superoxide production by a particulate fraction from the granulocytes of patients with chronic granulomatous disease.
    Curnutte JT; Kipnes RS; Babior BM
    N Engl J Med; 1975 Sep; 293(13):628-32. PubMed ID: 239342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant interferon gamma augments phagocyte superoxide production and X-chronic granulomatous disease gene expression in X-linked variant chronic granulomatous disease.
    Ezekowitz RA; Orkin SH; Newburger PE
    J Clin Invest; 1987 Oct; 80(4):1009-16. PubMed ID: 2821069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Con-A-stimulated superoxide production by granulocytes: reversible activation of NADPH oxidase.
    Cohen HJ; Chovaniec ME; Wilson MK; Newburger PE
    Blood; 1982 Nov; 60(5):1188-94. PubMed ID: 6289943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyridine nucleotide-dependent superoxide production by a cell-free system from human granulocytes.
    Babior BM; Curnutte JT; Kipnes BS
    J Clin Invest; 1975 Oct; 56(4):1035-42. PubMed ID: 239968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opsonized zymosan-stimulated granulocytes-activation and activity of the superoxide-generating system and membrane potential changes.
    Cohen HJ; Newburger PE; Chovaniec ME; Whitin JC; Simons ER
    Blood; 1981 Nov; 58(5):975-82. PubMed ID: 6271311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorpromazine inhibition of granulocyte superoxide production.
    Cohen HJ; Chovaniec ME; Ellis SE
    Blood; 1980 Jul; 56(1):23-9. PubMed ID: 6248151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic granulomatous disease due to granulocytes with abnormal NADPH oxidase activity and deficient cytochrome-b.
    Seger RA; Tiefenauer L; Matsunaga T; Wildfeuer A; Newburger PE
    Blood; 1983 Mar; 61(3):423-8. PubMed ID: 6297635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The respiratory burst oxidase.
    Babior BM
    Hematol Oncol Clin North Am; 1988 Jun; 2(2):201-12. PubMed ID: 2839456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variant chronic granulomatous disease: modulation of the neutrophil defect by severe infection.
    Newburger PE; Luscinskas FW; Ryan T; Beard CJ; Wright J; Platt OS; Simons ER; Tauber AI
    Blood; 1986 Oct; 68(4):914-9. PubMed ID: 3019454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chronic neutropenia and defect in superoxide generation of granulocytes in two patients: enhancement of bactericidal capacity and respiratory burst activity by treatment with recombinant human granulocyte colony-stimulating factor.
    Káposzta R; Maródi L
    Pediatr Res; 1995 Jan; 37(1):50-5. PubMed ID: 7535420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disorders of phagocyte function: biochemical aspects.
    Quie PG
    Prog Clin Biol Res; 1977; 13():157-69. PubMed ID: 45476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The respiratory burst of bovine neutrophils. Role of a b type cytochrome and coenzyme specificity.
    Morel F; Doussiere J; Stasia MJ; Vignais PV
    Eur J Biochem; 1985 Nov; 152(3):669-79. PubMed ID: 4054128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of monocytes by interferon-gamma has no effect on the level or affinity of the nicotinamide adenine dinucleotide-phosphate oxidase and on agonist-dependent superoxide formation.
    Thelen M; Wolf M; Baggiolini M
    J Clin Invest; 1988 Jun; 81(6):1889-95. PubMed ID: 2838524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the guinea pig granulocyte NAD(P)H-dependent superoxide generating enzyme: localization in a plasma membrane enriched particle and kinetics of activation.
    Cohen HJ; Chovaniec ME; Davies WA
    Blood; 1980 Mar; 55(3):355-63. PubMed ID: 6244012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Respiratory burst enzyme in human neutrophils. Evidence for multiple mechanisms of activation.
    McPhail LC; Henson PM; Johnston RB
    J Clin Invest; 1981 Mar; 67(3):710-6. PubMed ID: 6259208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monocyte dysfunction in patients with Gaucher disease: evidence for interference of glucocerebroside with superoxide generation.
    Liel Y; Rudich A; Nagauker-Shriker O; Yermiyahu T; Levy R
    Blood; 1994 May; 83(9):2646-53. PubMed ID: 8167344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered oxidative metabolism in selenium-deficient rat granulocytes.
    Baker SS; Cohen HJ
    J Immunol; 1983 Jun; 130(6):2856-60. PubMed ID: 6304192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow cytometric analysis of the granulocyte respiratory burst: a comparison study of fluorescent probes.
    Vowells SJ; Sekhsaria S; Malech HL; Shalit M; Fleisher TA
    J Immunol Methods; 1995 Jan; 178(1):89-97. PubMed ID: 7829869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cyclooxygenase inhibitors and protease inhibitors on phorbol-induced stimulation of oxygen consumption and superoxide production by rat pulmonary macrophages.
    Hoffman M; Autor AP
    Biochem Pharmacol; 1982 Mar; 31(5):775-80. PubMed ID: 6282276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.