These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 6309756)

  • 21. Photoaffinity reagents for use with pepsin and other carboxyl proteases.
    Hixson SH; Hurwitz JL; Langridge KJ; Nichols DC; Provost KM; Wolff AM
    Biochem Biophys Res Commun; 1983 Mar; 111(2):630-5. PubMed ID: 6404274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of pressure on the activity and spectroscopic properties of carboxyl proteinases. Apparent correlation of pepstatin-insensitivity and pressure response.
    Fujiwara S; Kunugi S; Oyama H; Oda K
    Eur J Biochem; 2001 Feb; 268(3):645-55. PubMed ID: 11168403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative modelling and analysis of amino acid substitutions suggests that the family of pregnancy-associated glycoproteins includes both active and inactive aspartic proteinases.
    Guruprasad K; Blundell TL; Xie S; Green J; Szafranska B; Nagel RJ; McDowell K; Baker CB; Roberts RM
    Protein Eng; 1996 Oct; 9(10):849-56. PubMed ID: 8931124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Studies on pepsin mutagenesis and recombinant rhizopuspepsinogen.
    Lin XL; Fusek M; Chen Z; Koelsch G; Han HP; Hartsuck JA; Tang J
    Adv Exp Med Biol; 1991; 306():1-8. PubMed ID: 1812694
    [No Abstract]   [Full Text] [Related]  

  • 25. The amino terminal sequences of acid proteases-human pepsin and gastricsin and the protease of Rhizopus chinensis.
    Sepulveda P; Jackson KW; Tang J
    Biochem Biophys Res Commun; 1975 Apr; 63(4):1106-12. PubMed ID: 236753
    [No Abstract]   [Full Text] [Related]  

  • 26. Amino acid sequences around 1, 2-epoxy-3-(p-nitrophenoxy)propane-reactive residues in rhizopus chinensis acid protease: homology with pepsin and rennin.
    Nakamura S; Takahashi K
    J Biochem; 1977 Mar; 81(3):805-7. PubMed ID: 16879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel inhibition of porcine pepsin by a substituted piperidine. Preference for one of the enzyme conformers.
    Marcinkeviciene J; Kopcho LM; Yang T; Copeland RA; Glass BM; Combs AP; Falahatpisheh N; Thompson L
    J Biol Chem; 2002 Aug; 277(32):28677-82. PubMed ID: 12029090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative specificity of microbial acid proteinases for synthetic peptides. 3. Relationship with their trypsinogen activating ability.
    Morihara K; Oka T
    Arch Biochem Biophys; 1973 Aug; 157(2):561-72. PubMed ID: 4581238
    [No Abstract]   [Full Text] [Related]  

  • 29. The active site of pepsin is formed in the intermediate conformation dominant at mildly acidic pH.
    Campos LA; Sancho J
    FEBS Lett; 2003 Mar; 538(1-3):89-95. PubMed ID: 12633859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site-directed mutagenesis of rhizopuspepsin: an analysis of unique specificity.
    Lowther WT; Dunn BM
    Adv Exp Med Biol; 1995; 362():555-8. PubMed ID: 8540371
    [No Abstract]   [Full Text] [Related]  

  • 31. Electron paramagnetic resonance studies on spin-labelling of pepsin: effects of temperature, pH and urea on its conformation.
    Aoshima H; Naito A; Hatano H
    Int J Pept Protein Res; 1976; 8(2):131-9. PubMed ID: 5380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mode of inhibition of acid proteases by pepstatin.
    Marciniszyn J; Hartsuck JA; Tang J
    J Biol Chem; 1976 Nov; 251(22):7088-94. PubMed ID: 993206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The sole lysine residue in porcine pepsin works as a key residue for catalysis and conformational flexibility.
    Cottrell TJ; Harris LJ; Tanaka T; Yada RY
    J Biol Chem; 1995 Aug; 270(34):19974-8. PubMed ID: 7650014
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structures of complexes of rhizopuspepsin with pepstatin and other statine-containing inhibitors.
    Suguna K; Padlan EA; Bott R; Boger J; Parris KD; Davies DR
    Proteins; 1992 Jul; 13(3):195-205. PubMed ID: 1603809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stability profiles of nepenthesin in urea and guanidine hydrochloride: comparison with porcine pepsin A.
    Kubota K; Metoki Y; Athauda SB; Shibata C; Takahashi K
    Biosci Biotechnol Biochem; 2010; 74(11):2323-6. PubMed ID: 21071863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. N-terminal domain of pepsin as a model for retroviral dimeric aspartyl protease.
    Bianchi M; Boigegrain RA; Castro B; Coletti-Previero MA
    Biochem Biophys Res Commun; 1990 Feb; 167(1):339-44. PubMed ID: 2106884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dissection of the pH dependence of inhibitor binding energetics for an aspartic protease: direct measurement of the protonation states of the catalytic aspartic acid residues.
    Xie D; Gulnik S; Collins L; Gustchina E; Suvorov L; Erickson JW
    Biochemistry; 1997 Dec; 36(51):16166-72. PubMed ID: 9405050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Revised 2.3 A structure of porcine pepsin: evidence for a flexible subdomain.
    Abad-Zapatero C; Rydel TJ; Erickson J
    Proteins; 1990; 8(1):62-81. PubMed ID: 2217165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes.
    Andreeva NS; Rumsh LD
    Protein Sci; 2001 Dec; 10(12):2439-50. PubMed ID: 11714911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The structure and function of acid proteases. Specific inactivation of an acid protease from Rhizopus chinensis by diazoacetyl-DL-norleucine methyl ester.
    Mizobe F; Takahashi K; Ando T
    J Biochem; 1973 Jan; 73(1):61-8. PubMed ID: 4570372
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.