These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 6310048)

  • 1. Defense posture and leg-position learning in a primitive insect utilize catchlike tension.
    Hoyle G; Field LH
    J Neurobiol; 1983 Jul; 14(4):285-98. PubMed ID: 6310048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elicitation and abrupt termination of behaviorally significant catchlike tension in a primitive insect.
    Hoyle G; Field LH
    J Neurobiol; 1983 Jul; 14(4):299-312. PubMed ID: 6411863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromuscular transmission in a primitive insect: modulation by octopamine, and catch-like tension.
    Hoyle G
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 77(2):219-32. PubMed ID: 6144420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning, using natural reinforcements, in insect preparations that permit cellular neuronal analysis.
    Hoyle G
    J Neurobiol; 1980 Jul; 11(4):323-54. PubMed ID: 7400811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leg position learning by an insect: II. Motor strategies underlying learned leg extension.
    Forman RR; Zill SN
    J Neurobiol; 1984 May; 15(3):221-37. PubMed ID: 6736952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: II. complex tibial organ.
    Nishino H; Field LH
    J Comp Neurol; 2003 Sep; 464(3):327-42. PubMed ID: 12900927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect.
    Büschges A
    J Neurobiol; 1995 Aug; 27(4):488-512. PubMed ID: 7561829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Motor responses of rabbits to repeated photic stimulation].
    Revina SK; Shuranova ZhP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1980; 30(1):123-32. PubMed ID: 7385997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromodulatory unpaired median neurons in the New Zealand tree weta, Hemideina femorata.
    Pflüger HJ; Field LH; Nishino H; Currie MJ
    J Insect Physiol; 2011 Oct; 57(10):1420-30. PubMed ID: 21810425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Somatotopic mapping of chordotonal organ neurons in a primitive ensiferan, the New Zealand tree weta Hemideina femorata: I. femoral chordotonal organ.
    Nishino H
    J Comp Neurol; 2003 Sep; 464(3):312-26. PubMed ID: 12900926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intersegmental transfer of sensory signals in the stick insect leg muscle control system.
    Stein W; Büschges A; Bässler U
    J Neurobiol; 2006 Sep; 66(11):1253-69. PubMed ID: 16902990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Activity of neurons of the motor zone of the cortex during elaboration of a local instrumental defensive reflex in the rabbit].
    Mednikova IuS
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1983; 33(6):1067-73. PubMed ID: 6666331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leg position learning by an insect. I. A heat avoidance learning paradigm.
    Forman RR
    J Neurobiol; 1984 Mar; 15(2):127-40. PubMed ID: 6716098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromuscular adaptation during skill acquisition on a two degree-of-freedom target-acquisition task: isometric torque production.
    Shemmell J; Forner M; Tresilian JR; Riek S; Barry BK; Carson RG
    J Neurophysiol; 2005 Nov; 94(5):3046-57. PubMed ID: 15944230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why leg crossing? The influence of common postures on abdominal muscle activity.
    Snijders CJ; Slagter AH; van Strik R; Vleeming A; Stoeckart R; Stam HJ
    Spine (Phila Pa 1976); 1995 Sep; 20(18):1989-93. PubMed ID: 8578373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular adaptation during skill acquisition on a two degree-of-freedom target-acquisition task: dynamic movement.
    Shemmell J; Tresilian JR; Riek S; Barry BK; Carson RG
    J Neurophysiol; 2005 Nov; 94(5):3058-68. PubMed ID: 15972829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interjoint coordination in the stick insect leg-control system: the role of positional signaling.
    Bucher D; Akay T; DiCaprio RA; Buschges A
    J Neurophysiol; 2003 Mar; 89(3):1245-55. PubMed ID: 12626610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The question of spontaneous electrical activity of motor units in man.
    Chobotas M?Saplinskas J?Jashchaninas J
    Electromyogr Clin Neurophysiol; 1974; 14(5-6):463-72. PubMed ID: 4457330
    [No Abstract]   [Full Text] [Related]  

  • 20. Flexion-relaxation response to gravity.
    Olson M; Solomonow M; Li L
    J Biomech; 2006; 39(14):2545-54. PubMed ID: 16256121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.