These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 6310456)

  • 1. Specific mu 2 opioid isoreceptor regulation of nigrostriatal neurons: in vivo evidence with naloxonazine.
    Wood PL; Pasternak GW
    Neurosci Lett; 1983 Jun; 37(3):291-3. PubMed ID: 6310456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphine and nigrostriatal function in the rat and mouse: the role of nigral and striatal opiate receptors.
    Wood PL; Richard JW
    Neuropharmacology; 1982 Dec; 21(12):1305-10. PubMed ID: 6296716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonism of morphine analgesia by intracerebroventricular naloxonazine.
    Simone DA; Bodnar RJ; Portzline T; Pasternak GW
    Pharmacol Biochem Behav; 1986 Jun; 24(6):1721-7. PubMed ID: 3016762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agonist/antagonist analgesics and nigrostriatal dopamine metabolism in the rat: evidence for receptor dualism.
    Wood PL; McQuade P; Richard JW; Thakur M
    Life Sci; 1983; 33 Suppl 1():759-62. PubMed ID: 6319927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Naloxonazine actions in vivo.
    Ling GS; Simantov R; Clark JA; Pasternak GW
    Eur J Pharmacol; 1986 Sep; 129(1-2):33-8. PubMed ID: 3021478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of selective opioid receptor antagonists on morphine-induced changes in striatal and limbic dopamine metabolism.
    Piepponen TP; Ahtee L
    Pharmacol Toxicol; 1995 Sep; 77(3):204-8. PubMed ID: 8884884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mu opioid receptor involvement in enkephalin activation of dopamine neurons in the ventral tegmental area.
    Latimer LG; Duffy P; Kalivas PW
    J Pharmacol Exp Ther; 1987 Apr; 241(1):328-37. PubMed ID: 3033208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphine catalepsy in the rat: involvement of mu 1 (high affinity) opioid binding sites.
    Ling GS; Pasternak GW
    Neurosci Lett; 1982 Oct; 32(2):193-6. PubMed ID: 6292799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The endogenous kappa agonist, dynorphin(1-13), does not alter basal or morphine-stimulated dopamine metabolism in the nigrostriatal pathway of the rat.
    Wood PL; Kim HS; Cosi C; Iyengar S
    Neuropharmacology; 1987 Nov; 26(11):1585-8. PubMed ID: 2893309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversal of the actions of morphine on mesocortical dopamine metabolism in the rat by the kappa agonist MR-2034: tentative mu-2 opioid control of mesocortical dopaminergic projections.
    Kim HS; Iyengar S; Wood PL
    Life Sci; 1987 Oct; 41(14):1711-5. PubMed ID: 2821337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of multiple opioid-receptor types in rat striatum after specific mesencephalic lesions.
    Eghbali M; Santoro C; Paredes W; Gardner EL; Zukin RS
    Proc Natl Acad Sci U S A; 1987 Sep; 84(18):6582-6. PubMed ID: 2819882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential blockade by naloxonazine of two mu opiate actions: analgesia and inhibition of gastrointestinal transit.
    Paul D; Pasternak GW
    Eur J Pharmacol; 1988 May; 149(3):403-4. PubMed ID: 2842168
    [No Abstract]   [Full Text] [Related]  

  • 13. Dissociation of opioid antinociception and central gastrointestinal propulsion in the mouse: studies with naloxonazine.
    Heyman JS; Williams CL; Burks TF; Mosberg HI; Porreca F
    J Pharmacol Exp Ther; 1988 Apr; 245(1):238-43. PubMed ID: 2834537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of opioid analgesia from respiratory depression: evidence for different receptor mechanisms.
    Ling GS; Spiegel K; Lockhart SH; Pasternak GW
    J Pharmacol Exp Ther; 1985 Jan; 232(1):149-55. PubMed ID: 2981312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substantia nigra as a site of origin of dopamine-dependent motor syndromes induced by stimulation of mu and delta opioid receptors.
    Morelli M; Fenu S; Di Chiara G
    Brain Res; 1989 May; 487(1):120-30. PubMed ID: 2546645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of dopamine-stimulated cyclic AMP efflux from rat neostriatal slices by activation of mu- and delta-opioid receptors: a permissive role for D-2 dopamine receptors.
    Schoffelmeer AN; Hansen HA; Stoof JC; Mulder AH
    Eur J Pharmacol; 1985 Dec; 118(3):363-6. PubMed ID: 2417870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meptazinol: a novel Mu-1 selective opioid analgesic.
    Spiegel K; Pasternak GW
    J Pharmacol Exp Ther; 1984 Feb; 228(2):414-9. PubMed ID: 6141283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mu opiate isoreceptors: differentiation with kappa agonists.
    Wood PL; Richard JW; Thakur M
    Life Sci; 1982 Nov 15-22; 31(20-21):2313-7. PubMed ID: 6131359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opioid regulation of CNS dopaminergic pathways: a review of methodology, receptor types, regional variations and species differences.
    Wood PL
    Peptides; 1983; 4(5):595-601. PubMed ID: 6318197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mu-Opioid receptor-regulated adenylate cyclase activity in primary cultures of rat striatal neurons upon chronic morphine exposure.
    Van Vliet BJ; De Vries TJ; Wardeh G; Mulder AH; Schoffelmeer AN
    Eur J Pharmacol; 1991 Oct; 208(2):105-11. PubMed ID: 1666051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.