These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 6311050)

  • 41. Photolabelling with 8-azido-adenine nucleotides of adenine nucleotide-binding sites in isolated spinach chloroplast ATPase (CF1).
    Wagenvoord RJ; Verschoor GJ; Kemp A
    Biochim Biophys Acta; 1981 Feb; 634(2):229-36. PubMed ID: 6451239
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tight binding of adenine nucleotides to beef-heart mitochondrial ATPase.
    Harris DA; Rosing J; van de Stadt RJ; Slater EC
    Biochim Biophys Acta; 1973 Aug; 314(2):149-53. PubMed ID: 4270535
    [No Abstract]   [Full Text] [Related]  

  • 43. The transport and accumulation of adenine nucleotides during mitochondrial biogenesis.
    Pollak JK; Sutton R
    Biochem J; 1980 Oct; 192(1):75-83. PubMed ID: 7305914
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Unfolded proteins stimulate molecular chaperone Hsc70 ATPase by accelerating ADP/ATP exchange.
    Sadis S; Hightower LE
    Biochemistry; 1992 Oct; 31(39):9406-12. PubMed ID: 1356434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tightly bound adenine nucleotide in bacterial membrane ATPase.
    Abrams A; Nolan EA; Jensen C; Smith JB
    Biochem Biophys Res Commun; 1973 Nov; 55(1):22-9. PubMed ID: 4274573
    [No Abstract]   [Full Text] [Related]  

  • 46. ENDOGENOUS ADP OF MITOCHONDRIA, AN EARLY PHOSPHATE ACCEPTOR OF OXIDATIVE PHOSPHORYLATION AS DISCLOSED BY KINETIC STUDIES WITH C14 LABELLED ADP AND ATP AND WITH ATRACTYLOSIDE.
    HELDT HW; JACOBS H; KLINGENBERG M
    Biochem Biophys Res Commun; 1965 Jan; 18():174-9. PubMed ID: 14282014
    [No Abstract]   [Full Text] [Related]  

  • 47. Comparison between ATP-supported and GTP-supported phosphate turnover of the calcium-transporting sarcoplasmic reticulum membranes.
    Ronzani N; Migala A; Hasselbach W
    Eur J Biochem; 1979 Nov; 101(2):593-606. PubMed ID: 160316
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [PREPARATION OF SILICA GEL FOR THIN-LAYER CHROMATOGRAPHY].
    PORGES E; PORGESOVA L
    Bratisl Lek Listy; 1963; 43():513-7. PubMed ID: 14060895
    [No Abstract]   [Full Text] [Related]  

  • 49. Tightly bound nucleotides of the energy-transducing ATPase, and their role in oxidative phosphorylation. II. The beef heart mitochondrial system.
    Harris DA; Radda GK; Slater EC
    Biochim Biophys Acta; 1977 Mar; 459(3):560-72. PubMed ID: 139163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular recognition of nucleotides by means of ionic interaction in hydrophobic media.
    Tabushi I; Kobuke Y; Imuta J
    Nucleic Acids Symp Ser; 1979; (6):s175-8. PubMed ID: 547231
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nonmitochondrial ATP/ADP transporters accept phosphate as third substrate.
    Trentmann O; Jung B; Neuhaus HE; Haferkamp I
    J Biol Chem; 2008 Dec; 283(52):36486-93. PubMed ID: 19001371
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Specificity of nucleotide binding and coupled reactions utilising the mitochondrial ATPase.
    Harris DA; Gomez-Fernandez JC; Klungsøyr L; Radda GK
    Biochim Biophys Acta; 1978 Dec; 504(3):364-83. PubMed ID: 152644
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lactic acid enantiomers: separation by thin-layer chromatography on silica gel plates impregnated with Cu2+.
    Cecchi L; Malaspina P
    Anal Biochem; 1991 Jan; 192(1):219-21. PubMed ID: 1646575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distinction between the intermediates in Na+-ATPase and Na+,K+-ATPase reactions. I. Exchange and hydrolysis kinetics at millimolar nucleotide concentrations.
    Plesner L; Plesner IW
    Biochim Biophys Acta; 1988 Jan; 937(1):51-62. PubMed ID: 2825808
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reaction mechanism of the magnesium ion-dependent adenosine triphosphatase of frog muscle myosin and subfragment 1.
    Ferenczi MA; Homsher E; Simmons RM; Trentham DR
    Biochem J; 1978 Apr; 171(1):165-75. PubMed ID: 148277
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A two-site mechanism for ATP hydrolysis by the asymmetric Rep dimer P2S as revealed by site-specific inhibition with ADP-A1F4.
    Wong I; Lohman TM
    Biochemistry; 1997 Mar; 36(11):3115-25. PubMed ID: 9115987
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondrial adenosinetriphosphatase inhibitor protein: reversible interaction with complex V (ATP synthetase complex).
    Galante YM; Wong SY; Hatefi Y
    Biochemistry; 1981 Apr; 20(9):2671-8. PubMed ID: 6263316
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative, analytical separation of adenine nucleotides by column chromatography on polyethyleneimine-coated cellulose.
    Magnusson RP; Portis AR; McCarty RE
    Anal Biochem; 1976 May; 72():653-7. PubMed ID: 182039
    [No Abstract]   [Full Text] [Related]  

  • 59. Measurements of exchange in the reaction catalysed by creatine kinase using 14C and 15N isotope labels and the NMR technique of saturation transfer.
    Brindle KM; Radda GK
    Biochim Biophys Acta; 1985 Jun; 829(2):188-201. PubMed ID: 3995051
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Properties of binding sites for adenine nucleotides on ATPase from yeast mitochondria.
    Hashimoto T; Negawa Y; Tagawa K
    J Biochem; 1981 Oct; 90(4):1141-50. PubMed ID: 6458599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.