These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 6311167)

  • 1. The fatty acid composition of 1,2-diacylglycerol and polyphosphoinositides from human erythrocyte membranes.
    Allan D; Cockcroft S
    Biochem J; 1983 Aug; 213(2):555-7. PubMed ID: 6311167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoinositide reorganization in human erythrocyte membrane upon cholesterol depletion.
    M'Zali H; Giraud F
    Biochem J; 1986 Feb; 234(1):13-20. PubMed ID: 3010950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between Ca2+-mediated polyphosphoinositide phosphodiesterase activity, 1, 2-diacylglycerol accumulation, and microvesiculation in erythrocytes.
    Allan D; Michell RH
    Prog Clin Biol Res; 1979; 30():523-9. PubMed ID: 231260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fatty acid composition of phosphatidylinositol, phosphatidate and 1,2-diacylglycerol in stimulated human neutrophils.
    Cockcroft S; Allan D
    Biochem J; 1984 Sep; 222(2):557-9. PubMed ID: 6477532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in morphology and in polyphosphoinositide turnover of human erythrocytes after cholesterol depletion.
    Giraud F; M'Zali H; Chailley B; Mazet F
    Biochim Biophys Acta; 1984 Nov; 778(1):191-200. PubMed ID: 6093880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of 1,2-diacylglycerol in human erythrocyte membranes exposed to low concentrations of calcium ions.
    Allan D; Michell RH
    Biochim Biophys Acta; 1976 Dec; 455(3):824-30. PubMed ID: 826280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of 1,2-diacylglycerol in human erythrocyte 'ghosts' exposed to very low calcium ion concentrations.
    Allan D; Michell RH
    Biochem Soc Trans; 1976; 4(2):252-3. PubMed ID: 826423
    [No Abstract]   [Full Text] [Related]  

  • 8. Inositol lipids, phosphatidate and diacylglycerol share stearoylarachidonoylglycerol as a common backbone in thrombin-stimulated human platelets.
    Mauco G; Dangelmaier CA; Smith JB
    Biochem J; 1984 Dec; 224(3):933-40. PubMed ID: 6525180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ca2+-activated polyphosphoinositide phosphodiesterase of human and rabbit neutrophil membranes.
    Cockcroft S; Baldwin JM; Allan D
    Biochem J; 1984 Jul; 221(2):477-82. PubMed ID: 6089740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-dependent hydrolyses of polyphosphoinositides in human erythrocyte membranes.
    Moore RB; Appel SH
    Can J Biochem Cell Biol; 1984 Jun; 62(6):363-8. PubMed ID: 6088012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coisolation of glycophorin A and polyphosphoinositides from human erythrocyte membranes.
    Buckley JT
    Can J Biochem; 1978 May; 56(5):349-51. PubMed ID: 208725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Ca2+ and Mg2+ on the turnover of the phosphomonoester group of phosphatidylinositol 4-phosphate in human erythrocyte membranes.
    Hegewald H; Müller E; Klinger R; Wetzker R; Frunder H
    Biochem J; 1987 May; 244(1):183-90. PubMed ID: 2821996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alkylacylglycerol molecular species in the glycosylinositol phospholipid membrane anchor of bovine erythrocyte acetylcholinesterase.
    Roberts WL; Myher JJ; Kuksis A; Rosenberry TL
    Biochem Biophys Res Commun; 1988 Jan; 150(1):271-7. PubMed ID: 3337715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium affects phosphoinositide turnover in human erythrocytes.
    Folk P; Strunecká A
    Gen Physiol Biophys; 1990 Jun; 9(3):281-90. PubMed ID: 2168334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of endogenously formed diacylglycerol in the propagation and termination of platelet activation. A biochemical and functional analysis using the novel diacylglycerol kinase inhibitor, R 59 949.
    de Chaffoy de Courcelles D; Roevens P; Van Belle H; Kennis L; Somers Y; De Clerck F
    J Biol Chem; 1989 Feb; 264(6):3274-85. PubMed ID: 2536741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of 1,2-diacylglycerol hydrolysis in human platelets. Demonstration of an arachidonoyl-monoacylglycerol intermediate.
    Prescott SM; Majerus PW
    J Biol Chem; 1983 Jan; 258(2):764-9. PubMed ID: 6822511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The polyphosphoinositide phosphodiesterase of erythrocyte membranes.
    Downes CP; Michell RH
    Biochem J; 1981 Jul; 198(1):133-40. PubMed ID: 6275838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of Ca2+ and Sr2+ on Ca2+-sensitive biochemical changes in human erythrocytes and their membranes.
    Allan D; Thomas P
    Biochem J; 1981 Sep; 198(3):441-5. PubMed ID: 6275846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism for lipid abnormalities of erythrocyte membranes in biliary obstruction: lecithin content and its fatty acyl composition.
    Okano Y; Yamauchi T; Sekiya T; Iida H; Hasegawa I; Nozawa Y
    Clin Chim Acta; 1978 Sep; 88(2):237-48. PubMed ID: 212219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+-induced polyphosphoinositide breakdown due to phosphomonoesterase activity in chicken erythrocytes.
    Raval PJ; Allan D
    Biochem J; 1985 Oct; 231(1):179-83. PubMed ID: 2998339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.