These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 6311172)

  • 1. The conformation of eukaryotic cytochrome c around residues 39, 57, 59 and 74.
    Robinson MN; Boswell AP; Huang ZX; Eley CG; Moore GR
    Biochem J; 1983 Sep; 213(3):687-700. PubMed ID: 6311172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H NMR studies of eukaryotic cytochrome c. Resonance assignments and iron-hexacyanide-mediated electron exchange.
    Boswell AP; Eley CG; Moore GR; Robinson MN; Williams G; Williams RJ; Neupert WJ; Hennig B
    Eur J Biochem; 1982 May; 124(2):289-94. PubMed ID: 6284503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural role of the tyrosine residues of cytochrome c.
    Eley CG; Moore GR; Williams RJ; Neupert W; Boon PJ; Brinkhof HH; Nivard RJ; Tesser GI
    Biochem J; 1982 Jul; 205(1):153-65. PubMed ID: 6289807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isomerization and denaturation of homologous cytochromes c: correlation between local and gross conformational changes.
    Saigo S
    J Biochem; 1986 Jul; 100(1):157-65. PubMed ID: 3020012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1H NMR studies of the electron exchange between cytochrome c and iron hexacyanides. Definition of the iron hexacyanide binding sites on cytochrome c.
    Eley CG; Moore GR; Williams G; Williams RJ
    Eur J Biochem; 1982 May; 124(2):295-303. PubMed ID: 6284504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of multiple amino acid substitutions on the polypeptide backbone of tuna and horse cytochromes c.
    Gao Y; Lee AD; Williams RJ; Williams G
    Eur J Biochem; 1989 Jun; 182(1):57-65. PubMed ID: 2543575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of mitochondrial cytochrome c. I. 1H nuclear magnetic resonance of ferricytochrome c.
    Williams G; Moore GR; Porteous R; Robinson MN; Soffe N; Williams RJ
    J Mol Biol; 1985 Jun; 183(3):409-28. PubMed ID: 2991531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of yeast and beef cytochrome c oxidases. Kinetics and binding of horse, fungal, and Euglena cytochromes c.
    Dethmers JK; Ferguson-Miller S; Margoliash E
    J Biol Chem; 1979 Dec; 254(23):11973-81. PubMed ID: 227884
    [No Abstract]   [Full Text] [Related]  

  • 9. Probing local thermal stabilities of bovine, horse, and tuna ferricytochromes c at pH 7.
    Filosa A; English AM
    J Biol Inorg Chem; 2000 Aug; 5(4):448-54. PubMed ID: 10968615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c.
    Louie GV; Brayer GD
    J Mol Biol; 1990 Jul; 214(2):527-55. PubMed ID: 2166169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionization of tyrosine and lysine residues in native and modified horse cytochrome c.
    Boswell AP; Moore GR; Williams RJ; Harris DE; Wallace CJ; Bocieck S; Welti D
    Biochem J; 1983 Sep; 213(3):679-86. PubMed ID: 6311171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assignment of hyperfine-shifted resonances in yeast ferricytochrome c isozyme 2 using the proton pre-steady-state nuclear Overhauser effect.
    Satterlee JD; Avizonis DZ; Moench SJ
    Biochim Biophys Acta; 1988 Feb; 952(3):317-24. PubMed ID: 2827781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution three-dimensional structure of horse heart cytochrome c.
    Bushnell GW; Louie GV; Brayer GD
    J Mol Biol; 1990 Jul; 214(2):585-95. PubMed ID: 2166170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal denaturation of cytochromes c of horse cow, and Candida krusei in aqueous guanidine hydrochloride.
    Kawaguchi H; Noda H
    J Biochem; 1977 May; 81(5):1307-17. PubMed ID: 19430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of conformational heterogeneity in the heme pocket of ferricytochrome c using high field proton nuclear magnetic resonance spectroscopy.
    Burns PD; La Mar GN
    J Biol Chem; 1981 May; 256(10):4934-9. PubMed ID: 6262309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The solution structures of tuna and horse cytochromes c.
    Moore GR; Williams RJ
    Eur J Biochem; 1980 Feb; 103(3):533-41. PubMed ID: 6244162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of core domains, and the core domain-domain interaction of cytochrome c fragment complex.
    Fisher A; Taniuchi H
    Arch Biochem Biophys; 1992 Jul; 296(1):1-16. PubMed ID: 1376596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The electric potential field around cytochrome c and the effect of ionic strength on reaction rates of horse cytochrome c.
    Koppenol WH; Vroonland CA; Braams R
    Biochim Biophys Acta; 1978 Sep; 503(3):499-508. PubMed ID: 210807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and expression of genes encoding tuna, pigeon, and horse cytochromes c in the yeast Saccharomyces cerevisiae.
    Hickey DR; Jayaraman K; Goodhue CT; Shah J; Fingar SA; Clements JM; Hosokawa Y; Tsunasawa S; Sherman F
    Gene; 1991 Aug; 105(1):73-81. PubMed ID: 1657715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helix movements and the reconstruction of the haem pocket during the evolution of the cytochrome c family.
    Chothia C; Lesk AM
    J Mol Biol; 1985 Mar; 182(1):151-8. PubMed ID: 2987508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.