These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 6311387)

  • 41. Inactivation strategy for Clostridium perfringens spores adhered to food contact surfaces.
    Udompijitkul P; Alnoman M; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2013 Jun; 34(2):328-36. PubMed ID: 23541199
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enterotoxin synthesis by nonsporulating cultures of Clostridium perfringens.
    Goldner SB; Solberg M; Jones S; Post LS
    Appl Environ Microbiol; 1986 Sep; 52(3):407-12. PubMed ID: 2876679
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Influence of carbohydrates on growth and sporulation of Clostridium perfringens type A.
    Labbe RG; Duncan CL
    Appl Microbiol; 1975 Mar; 29(3):345-51. PubMed ID: 163617
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analysis of the germination of individual Clostridium perfringens spores and its heterogeneity.
    Wang G; Zhang P; Paredes-Sabja D; Green C; Setlow P; Sarker MR; Li YQ
    J Appl Microbiol; 2011 Nov; 111(5):1212-23. PubMed ID: 21883730
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Porcine Clostridium perfringens type A spores, enterotoxin and antibody to enterotoxin.
    Estrada Correa AE; Taylor DJ
    Vet Rec; 1989 Jun; 124(23):606-10. PubMed ID: 2547268
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The inhibitory effects of essential oil constituents against germination, outgrowth and vegetative growth of spores of Clostridium perfringens type A in laboratory medium and chicken meat.
    Alanazi S; Alnoman M; Banawas S; Saito R; Sarker MR
    Food Microbiol; 2018 Aug; 73():311-318. PubMed ID: 29526218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibitory effects of polyphosphates on Clostridium perfringens growth, sporulation and spore outgrowth.
    Akhtar S; Paredes-Sabja D; Sarker MR
    Food Microbiol; 2008 Sep; 25(6):802-8. PubMed ID: 18620972
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sporulation and enterotoxin production by mutants of Clostridium perfringens.
    Duncan CL; Strong DH; Sebald M
    J Bacteriol; 1972 Apr; 110(1):378-91. PubMed ID: 4336110
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved medium for sporulation of Clostridium perfringens.
    Duncan CL; Strong DH
    Appl Microbiol; 1968 Jan; 16(1):82-9. PubMed ID: 4295179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of elevated temperature on starch hydrolysis by enterotoxin-positive and enterotoxin-negative strains of Clostridium perfringens type A.
    García-Alvarado JS; Rodriguez MA; Labbé RG
    Appl Environ Microbiol; 1992 Jan; 58(1):326-30. PubMed ID: 1371660
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes in the hydrophobic characteristics of Clostridium perfringens spores and spore coats by heat.
    Craven SE; Blankenship LC
    Can J Microbiol; 1987 Sep; 33(9):773-6. PubMed ID: 2891427
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alteration in ultrastructure and germination of Clostridium perfringens type A spores following extraction of spore coats.
    Labbe RG; Reich RR; Duncan CL
    Can J Microbiol; 1978 Dec; 24(12):1526-36. PubMed ID: 218713
    [No Abstract]   [Full Text] [Related]  

  • 53. Mechanism of chemical manipulation of the heat resistance of Clostridium perfringens spores.
    Ando Y; Tsuzuki T
    J Appl Bacteriol; 1983 Apr; 54(2):197-202. PubMed ID: 6303999
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Complementation of a Clostridium perfringens spo0A mutant with wild-type spo0A from other Clostridium species.
    Huang IH; Sarker MR
    Appl Environ Microbiol; 2006 Sep; 72(9):6388-93. PubMed ID: 16957268
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chitosan inhibits enterotoxigenic Clostridium perfringens type A in growth medium and chicken meat.
    Alnoman M; Udompijitkul P; Sarker MR
    Food Microbiol; 2017 Jun; 64():15-22. PubMed ID: 28213020
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro cytotoxicity induced by Clostridium perfringens isolate carrying a chromosomal cpe gene is exclusively dependent on sporulation and enterotoxin production.
    Yasugi M; Sugahara Y; Hoshi H; Kondo K; Talukdar PK; Sarker MR; Yamamoto S; Kamata Y; Miyake M
    Microb Pathog; 2015 Aug; 85():1-10. PubMed ID: 25912832
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Expression of germination-related enzymes, CspA, CspB, CspC, SleC, and SleM, of Clostridium perfringens S40 in the mother cell compartment of sporulating cells.
    Masayama A; Hamasaki K; Urakami K; Shimamoto S; Kato S; Makino S; Yoshimura T; Moriyama M; Moriyama R
    Genes Genet Syst; 2006 Aug; 81(4):227-34. PubMed ID: 17038794
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Increased numbers of heat-resistnat spores produced by two strains of Clostridium perfringens bearing temperate phage s9.
    Stewart AW; Johnson MG
    J Gen Microbiol; 1977 Nov; 103(1):45-50. PubMed ID: 201726
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Behavior of Clostridium perfringens at low temperatures.
    de Jong AE; Rombouts FM; Beumer RR
    Int J Food Microbiol; 2004 Dec; 97(1):71-80. PubMed ID: 15527920
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clostridium perfringens sporulation and its relevance to pathogenesis.
    Paredes-Sabja D; Sarker MR
    Future Microbiol; 2009 Jun; 4(5):519-25. PubMed ID: 19492963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.