These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 6311484)

  • 1. The application of nuclear magnetic resonance data to radiation therapy.
    Bloch P
    Comput Radiol; 1983; 7(3):195-8. PubMed ID: 6311484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microdosimetric investigations on collimated fast-neutron beams for radiation therapy: I. Measurements of microdosimetric spectra and particle dose fractions in a water phantom for fast neutrons from 14 MeV deuterons on beryllium.
    Fidorra J; Booz J
    Phys Med Biol; 1981 Jan; 26(1):27-41. PubMed ID: 6264509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems.
    Farah J; Mares V; Romero-Expósito M; Trinkl S; Domingo C; Dufek V; Klodowska M; Kubancak J; Knežević Ž; Liszka M; Majer M; Miljanić S; Ploc O; Schinner K; Stolarczyk L; Trompier F; Wielunski M; Olko P; Harrison RM
    Med Phys; 2015 May; 42(5):2572-84. PubMed ID: 25979049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of organ-specific neutron equivalent doses in proton therapy using computational whole-body age-dependent voxel phantoms.
    Zacharatou Jarlskog C; Lee C; Bolch WE; Xu XG; Paganetti H
    Phys Med Biol; 2008 Feb; 53(3):693-717. PubMed ID: 18199910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microdosimetric investigations on collimated fast neutron beams for radiation therapy: II. The problem of radiation quality and RBE.
    Booz J; Fidorra J
    Phys Med Biol; 1981 Jan; 26(1):43-56. PubMed ID: 6264510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutrons in active proton therapy: Parameterization of dose and dose equivalent.
    Schneider U; Hälg RA; Lomax T
    Z Med Phys; 2017 Jun; 27(2):113-123. PubMed ID: 27524678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive spectrometry study of a stray neutron radiation field in scanning proton therapy.
    Mares V; Romero-Expósito M; Farah J; Trinkl S; Domingo C; Dommert M; Stolarczyk L; Van Ryckeghem L; Wielunski M; Olko P; Harrison RM
    Phys Med Biol; 2016 Jun; 61(11):4127-40. PubMed ID: 27171358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in light ion radiation therapy.
    Brahme A
    Int J Radiat Oncol Biol Phys; 2004 Feb; 58(2):603-16. PubMed ID: 14751534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton therapy in the clinic.
    DeLaney TF
    Front Radiat Ther Oncol; 2011; 43():465-485. PubMed ID: 21625169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of neutron therapy beams produced by 50 MeV deuterons and 65 MeV protons on beryllium.
    Vynckier S; Pihet P; Octave-Prignot M; Meulders JP; Wambersie A
    Acta Radiol Oncol; 1982; 21(4):281-7. PubMed ID: 6293271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative study of the effects of different radiation qualities on normal human breast cells.
    Juerß D; Zwar M; Giesen U; Nolte R; Kriesen S; Baiocco G; Puchalska M; van Goethem MJ; Manda K; Hildebrandt G
    Radiat Oncol; 2017 Sep; 12(1):159. PubMed ID: 28946898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE.
    Schneider U; Hälg RA; Baiocco G; Lomax T
    Phys Med Biol; 2016 Aug; 61(16):6231-42. PubMed ID: 27486057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of the impact of photon and proton external beam radiotherapy treatment modalities on the dose distribution in field and out-of-field; implications for the long-term morbidity of cancer survivors.
    Palm A; Johansson KA
    Acta Oncol; 2007; 46(4):462-73. PubMed ID: 17497313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary Neutron Doses to Pediatric Patients During Intracranial Proton Therapy: Monte Carlo Simulation of the Neutron Energy Spectrum and its Organ Doses.
    Matsumoto S; Koba Y; Kohno R; Lee C; Bolch WE; Kai M
    Health Phys; 2016 Apr; 110(4):380-6. PubMed ID: 26910030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.
    Diffenderfer ES; Ainsley CG; Kirk ML; McDonough JE; Maughan RL
    Med Phys; 2011 Nov; 38(11):6248-56. PubMed ID: 22047390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microdosimetric characterization of a cyclotron-produced therapeutic neutron beam.
    Stafford PM; Horton JL; Almond PR
    Med Phys; 1987; 14(6):1015-9. PubMed ID: 3696065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phantom dosimeters examined by NMR analysis: a promising technique for 3-D determinations of absorbed dose.
    Gambarini G; Monti D; Fumagalli ML; Birattari C; Salvadori P
    Appl Radiat Isot; 1997; 48(10-12):1477-84. PubMed ID: 9463873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary neutron dose during proton therapy using spot scanning.
    Schneider U; Agosteo S; Pedroni E; Besserer J
    Int J Radiat Oncol Biol Phys; 2002 May; 53(1):244-51. PubMed ID: 12007965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA.
    Lee C; Lee S; Lee SJ; Song H; Kim DH; Cho S; Jo K; Han Y; Chung YH; Kim JS
    PLoS One; 2017; 12(10):e0186544. PubMed ID: 29045491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.