BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 6311799)

  • 1. Localization of the major dehydrogenases in two methylotrophs by radiochemical labeling.
    Kasprzak AA; Steenkamp DJ
    J Bacteriol; 1983 Oct; 156(1):348-53. PubMed ID: 6311799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation by carbon source of enzyme expression and slime production in bacterium W3A1.
    Davidson VL
    J Bacteriol; 1985 Nov; 164(2):941-3. PubMed ID: 3902804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors affecting the production of pyrroloquinoline quinone by the methylotrophic bacterium W3A1.
    McIntire WS; Weyler W
    Appl Environ Microbiol; 1987 Sep; 53(9):2183-8. PubMed ID: 3118809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylamine dehydrogenase and cytochrome c552 from the bacterium W3A1.
    Chandrasekar R; Klapper MH
    J Biol Chem; 1986 Mar; 261(8):3616-9. PubMed ID: 3005294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition by trimethylamine of methylamine oxidation by Paracoccus denitrificans and bacterium W3A1.
    Davidson VL; Kumar MA
    Biochim Biophys Acta; 1990 Apr; 1016(3):339-43. PubMed ID: 2331476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic studies on the dehydrogenases of methylotrophic bacteria. 2. Kinetic studies on the intramolecular electron transfer in trimethylamine and dimethylamine dehydrogenase.
    Steenkamp DJ; Beinert H
    Biochem J; 1982 Nov; 207(2):241-52. PubMed ID: 6297456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identity of the subunits and the stoicheiometry of prosthetic groups in trimethylamine dehydrogenase and dimethylamine dehydrogenase.
    Kasprzak AA; Papas EJ; Steenkamp DJ
    Biochem J; 1983 Jun; 211(3):535-41. PubMed ID: 6882357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and genomic characterization of Novimethylophilus kurashikiensis gen. nov. sp. nov., a new lanthanide-dependent methylotrophic species of Methylophilaceae.
    Lv H; Sahin N; Tani A
    Environ Microbiol; 2018 Mar; 20(3):1204-1223. PubMed ID: 29411502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of the methylene tetrahydromethanopterin dehydrogenase MtdB and the methylene tetrahydrofolate dehydrogenase FolD from Hyphomicrobium zavarzinii ZV580.
    Goenrich M; Bursy J; Hübner E; Linder D; Schwartz AC; Vorholt JA
    Arch Microbiol; 2002 Apr; 177(4):299-303. PubMed ID: 11889483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation of obligate methylotrophs and restricted facultative methylotrophs.
    Colby J; Zatman LJ
    Biochem J; 1975 Jun; 148(3):513-20. PubMed ID: 1200991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The primary structure of Hyphomicrobium X dimethylamine dehydrogenase. Relationship to trimethylamine dehydrogenase and implications for substrate recognition.
    Yang CC; Packman LC; Scrutton NS
    Eur J Biochem; 1995 Aug; 232(1):264-71. PubMed ID: 7556160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The asymmetric orientation of cytochrome b561 in bovine chromaffin granule membranes.
    Duong LT; Fleming PJ
    Arch Biochem Biophys; 1984 Jan; 228(1):332-41. PubMed ID: 6364990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biochemistry, physiology and genetics of PQQ and PQQ-containing enzymes.
    Goodwin PM; Anthony C
    Adv Microb Physiol; 1998; 40():1-80. PubMed ID: 9889976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylamine dehydrogenases from methylotrophic bacteria.
    Davidson VL
    Methods Enzymol; 1990; 188():241-6. PubMed ID: 2126329
    [No Abstract]   [Full Text] [Related]  

  • 15. Strategy for the isolation of native dehydrogenases with potential for biosensor development from the organism Hyphomicrobium zavarzinii ZV580.
    Hilbrig F; Jérôme V; Salzig M; Freitag R
    J Chromatogr A; 2009 Apr; 1216(16):3518-25. PubMed ID: 18835606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the structure and linkage of the covalent cofactor of methylamine dehydrogenase from the methylotrophic bacterium W3A1.
    McIntire WS; Stults JT
    Biochem Biophys Res Commun; 1986 Dec; 141(2):562-8. PubMed ID: 3801015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of the methylamine utilization (mau) genes in Methylophilus methylotrophus W3A1-NS.
    Chistoserdov AY; McIntire WS; Mathews FS; Lidstrom ME
    J Bacteriol; 1994 Jul; 176(13):4073-80. PubMed ID: 8021188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct electrochemistry of the enzyme, methylamine dehydrogenase, from bacterium W3A1.
    Burrows AL; Hill HA; Leese TA; Mcintire WS; Nakayama H; Sanghera GS
    Eur J Biochem; 1991 Jul; 199(1):73-8. PubMed ID: 2065680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of periplasmic redox proteins of Alcaligenes faecalis by a modified general method for fractionating gram-negative bacteria.
    Zhu Z; Sun D; Davidson VL
    J Bacteriol; 1999 Oct; 181(20):6540-2. PubMed ID: 10515948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of methanol dehydrogenase in two strains of methylotrophic bacteria detected by immunogold labeling.
    Fassel TA; Buchholz LA; Collins ML; Remsen CC
    Appl Environ Microbiol; 1992 Jul; 58(7):2302-7. PubMed ID: 1365400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.