BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 6312192)

  • 1. Interactions of chrysotile and crocidolite asbestos with red blood cell membranes. Chrysotile binds to sialic acid.
    Brody AR; George G; Hill LH
    Lab Invest; 1983 Oct; 49(4):468-75. PubMed ID: 6312192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemolysis by chrysotile asbestos fibers. I. Influence of the sialic acid content in human, rat, and sheep red blood cell membranes.
    Pelé JP; Calvert R
    J Toxicol Environ Health; 1983; 12(4-6):827-40. PubMed ID: 6321749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of chrysotile asbestos with erythrocyte membranes.
    Brody AR; Hill LH
    Environ Health Perspect; 1983 Sep; 51():85-9. PubMed ID: 6315387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chrysotile asbestos-induced membrane damage in human erythrocytes.
    Elferink JG; Kelters I
    Res Commun Chem Pathol Pharmacol; 1991 Sep; 73(3):355-65. PubMed ID: 1719594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the sialic acid content of the membrane on its susceptibility to chrysotile.
    Depasse J
    Environ Res; 1982 Apr; 27(2):384-8. PubMed ID: 6282579
    [No Abstract]   [Full Text] [Related]  

  • 6. Comparative studies of fibrogenic properties of wollastonite, chrysotile and crocidolite.
    Woźniak H; Wiecek E; Tossavainen A; Lao I; Kołakowski J
    Med Pr; 1986; 37(5):288-96. PubMed ID: 3027496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proliferative and histopathologic changes in rat lungs after inhalation of chrysotile or crocidolite asbestos.
    BéruBé KA; Quinlan TR; Moulton G; Hemenway D; O'Shaughnessy P; Vacek P; Mossman BT
    Toxicol Appl Pharmacol; 1996 Mar; 137(1):67-74. PubMed ID: 8607143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and biochemical effects on rat lung following instillation of crocidolite and chrysotile asbestos.
    Hirano S; Ono M; Aimoto A
    J Toxicol Environ Health; 1988; 24(1):27-39. PubMed ID: 2453678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrapulmonary distribution of inhaled chrysotile and crocidolite asbestos: ultrastructural features.
    Oghiso Y; Kagan E; Brody AR
    Br J Exp Pathol; 1984 Aug; 65(4):467-84. PubMed ID: 6087872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proliferation stimulating effects of chrysotile and crocidolite asbestos fibres on B lymphocyte cell lines.
    Ueki A; Oka T; Mochizuki Y
    Clin Exp Immunol; 1984 May; 56(2):425-30. PubMed ID: 6329565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial changes induced by natural and synthetic asbestos fibers: studies on isolated mitochondria.
    Bergamini C; Fato R; Biagini G; Pugnaloni A; Giantomassi F; Foresti E; Lesci GI; Roveri N; Lenaz G
    Cell Mol Biol (Noisy-le-grand); 2004; 50 Online Pub():OL691-700. PubMed ID: 15607050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sialic acid mediates the initial binding of positively charged inorganic particles to alveolar macrophage membranes.
    Gallagher JE; George G; Brody AR
    Am Rev Respir Dis; 1987 Jun; 135(6):1345-52. PubMed ID: 3592407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in lipid ordering of model phospholipid membranes treated with chrysotile and crocidolite asbestos.
    Gendek EG; Brody AR
    Environ Res; 1990 Dec; 53(2):152-67. PubMed ID: 2174769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Update of potency factors for asbestos-related lung cancer and mesothelioma.
    Berman DW; Crump KS
    Crit Rev Toxicol; 2008; 38 Suppl 1():1-47. PubMed ID: 18671157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of neuraminidase on concanavalin A agglutination of erythrocytes: evidence for adsorption of neuraminidase to erythrocyte membrane.
    LaMont JT; Isselbacher KJ
    J Cell Physiol; 1977 Mar; 90(3):565-72. PubMed ID: 558203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast cells long-term interaction with asbestos fibers.
    Cassiola F; Rogers RA; Kiyohara PK; Joekes I
    Colloids Surf B Biointerfaces; 2005 Apr; 41(4):277-83. PubMed ID: 15748823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of membrane proteins in monosodium urate crystal-membrane interactions. I. Effect of pretreatment of erythrocyte membranes with glutaraldehyde and neuraminidase.
    Burt HM; Jackson JK; Kim KJ
    J Rheumatol; 1990 Oct; 17(10):1353-8. PubMed ID: 2123933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic materials and living organisms: surface modifications and fungal responses to various asbestos forms.
    Daghino S; Martino E; Fenoglio I; Tomatis M; Perotto S; Fubini B
    Chemistry; 2005 Sep; 11(19):5611-8. PubMed ID: 16021644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Participation of iron and nitric oxide in the mutagenicity of asbestos in hgprt-, gpt+ Chinese hamster V79 cells.
    Park SH; Aust AE
    Cancer Res; 1998 Mar; 58(6):1144-8. PubMed ID: 9515798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Qualitative and quantitative evaluation of chrysotile and crocidolite fibres with infrared spectrophotometry: application to asbestos-cement products.
    Valerio F; Balducci D
    IARC Sci Publ; 1989; (90):197-204. PubMed ID: 2545609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.