BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 6312192)

  • 21. Dependence of asbestos- and mineral dust-induced transformation of mammalian cells in culture on fiber dimension.
    Hesterberg TW; Barrett JC
    Cancer Res; 1984 May; 44(5):2170-80. PubMed ID: 6324999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Studies using lectins to determine mineral interactions with cellular membranes.
    Mossman BT; Jean L; Landesman JM
    Environ Health Perspect; 1983 Sep; 51():23-5. PubMed ID: 6315363
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased neutrophil adherence to endothelial cells exposed to asbestos.
    Treadwell MD; Mossman BT; Barchowsky A
    Toxicol Appl Pharmacol; 1996 Jul; 139(1):62-70. PubMed ID: 8685910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial changes induced by natural and synthetic asbestos fibers: studies on isolated mitochondria.
    Bergamini C; Fato R; Biagini G; Pugnaloni A; Giantomassi F; Foresti E; Lesci GI; Roveri N; Lenaz G
    Cell Mol Biol (Noisy-le-grand); 2007 Jan; 52 Suppl():OL905-13. PubMed ID: 17543227
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of well-defined fibres on red blood cells and alveolar macrophages.
    Jaurand MC; Magne L; Bignon J; Goni J
    IARC Sci Publ; 1980; (30):441-50. PubMed ID: 6786990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytotoxicity and multinucleate giant cell formation in Chinese hamster lung fibroblast caused by crocidolite and chrysotile.
    Hong YC; Choi SS
    J Korean Med Sci; 1997 Apr; 12(2):99-104. PubMed ID: 9170013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Fibre interaction with red blood cells or alveolar macrophages "in vitro" (author's transl)].
    Jaurand MC; Bignon J; Magne L; Renier A; Lafuma J
    Rev Fr Mal Respir; 1979 Dec; 7(7):717-22. PubMed ID: 233435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytotoxic and cytogenetic effects of asbestos on human bronchial epithelial cells in culture.
    Kodama Y; Boreiko CJ; Maness SC; Hesterberg TW
    Carcinogenesis; 1993 Apr; 14(4):691-7. PubMed ID: 8386067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological ageing of red blood cells and changes in membrane carbohydrates.
    Gattegno L; Fabia F; Bladier D; Cornillot P
    Biomedicine; 1979 Oct; 30(4):194-9. PubMed ID: 534673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Characterization of the biological properties of acid-treated chrysotile-asbestos fibers].
    Pylev LN; Vasil'eva LA; Stadnikova NM; Smirnova OV; Zubakova LE; Vezentsev AI; Gudkova EA; Bakhtin AI
    Gig Sanit; 2006; (4):70-3. PubMed ID: 17078302
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodurability and release of metals during the dissolution of chrysotile, crocidolite and fibrous erionite.
    Gualtieri AF; Lusvardi G; Zoboli A; Di Giuseppe D; Lassinantti Gualtieri M
    Environ Res; 2019 Apr; 171():550-557. PubMed ID: 30763876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous exposure to chrysotile asbestos can cause transformation of human mesothelial cells via HMGB1 and TNF-α signaling.
    Qi F; Okimoto G; Jube S; Napolitano A; Pass HI; Laczko R; Demay RM; Khan G; Tiirikainen M; Rinaudo C; Croce A; Yang H; Gaudino G; Carbone M
    Am J Pathol; 2013 Nov; 183(5):1654-66. PubMed ID: 24160326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of genotoxic effects in asbestos-exposed primary human mesothelial cells by radical scavengers, metal chelators and a glutathione precursor.
    Poser I; Rahman Q; Lohani M; Yadav S; Becker HH; Weiss DG; Schiffmann D; Dopp E
    Mutat Res; 2004 Apr; 559(1-2):19-27. PubMed ID: 15066570
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of asbestos on the random migration of rabbit alveolar macrophages.
    Myrvik QN; Knox EA; Gordon M; Shirley PS
    Environ Health Perspect; 1985 May; 60():387-93. PubMed ID: 2863136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the dose-response and fate in the lung and pleura of chrysotile-containing brake dust compared to chrysotile or crocidolite asbestos in a 28-day quantitative inhalation toxicology study.
    Bernstein DM; Toth B; Rogers RA; Sepulveda R; Kunzendorf P; Phillips JI; Ernst H
    Toxicol Appl Pharmacol; 2018 Jul; 351():74-92. PubMed ID: 29705295
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of chrysotile and crocidolite on the morphology and growth of rat pleural mesothelial cells.
    Jaurand MC; Bastie-Sigeac I; Bignon J; Stoebner P
    Environ Res; 1983 Apr; 30(2):255-69. PubMed ID: 6299725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metaphase and anaphase analysis of V79 cells exposed to erionite, UICC chrysotile and UICC crocidolite.
    Palekar LD; Eyre JF; Most BM; Coffin DL
    Carcinogenesis; 1987 Apr; 8(4):553-60. PubMed ID: 3030579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electric field-induced polarization of charged cell surface proteins does not determine the direction of galvanotaxis.
    Finkelstein EI; Chao PH; Hung CT; Bulinski JC
    Cell Motil Cytoskeleton; 2007 Nov; 64(11):833-46. PubMed ID: 17685443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of asbestos body formation by high resolution FEG-SEM after exposure of Sprague-Dawley rats to chrysotile, crocidolite, or erionite.
    Gandolfi NB; Gualtieri AF; Pollastri S; Tibaldi E; Belpoggi F
    J Hazard Mater; 2016 Apr; 306():95-104. PubMed ID: 26705886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Qualitative and quantitative evaluation of chrysotile and crocidolite fibers with IR-spectroscopy: application to asbestos-cement products.
    Balducci D; Valerio F
    Int J Environ Anal Chem; 1986; 27(4):315-23. PubMed ID: 3028969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.