These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 6312317)

  • 1. Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation.
    LaPorte DC; Koshland DE
    Nature; 1983 Sep 22-28; 305(5932):286-90. PubMed ID: 6312317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity and robustness in covalent modification cycles with a bifunctional converter enzyme.
    Straube R
    Biophys J; 2013 Oct; 105(8):1925-33. PubMed ID: 24138868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The regulatory properties of isocitrate dehydrogenase kinase and isocitrate dehydrogenase phosphatase from Escherichia coli ML308 and the roles of these activities in the control of isocitrate dehydrogenase.
    Nimmo GA; Nimmo HG
    Eur J Biochem; 1984 Jun; 141(2):409-14. PubMed ID: 6329757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanisms for the control of enzymic activity by protein phosphorylation.
    Barford D
    Biochim Biophys Acta; 1991 Dec; 1133(1):55-62. PubMed ID: 1751552
    [No Abstract]   [Full Text] [Related]  

  • 5. The isocitrate dehydrogenase phosphorylation cycle: regulation and enzymology.
    LaPorte DC
    J Cell Biochem; 1993 Jan; 51(1):14-8. PubMed ID: 8381789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isocitrate dehydrogenase kinase/phosphatase exhibits an intrinsic adenosine triphosphatase activity.
    Stueland CS; Eck KR; Stieglbauer KT; LaPorte DC
    J Biol Chem; 1987 Nov; 262(33):16095-9. PubMed ID: 2824478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A protein with kinase and phosphatase activities involved in regulation of tricarboxylic acid cycle.
    LaPorte DC; Koshland DE
    Nature; 1982 Dec; 300(5891):458-60. PubMed ID: 6292732
    [No Abstract]   [Full Text] [Related]  

  • 8. The regulation of enzyme activity by reversible phosphorylation.
    Hardie DG; Guy PS
    Prog Brain Res; 1982; 56():145-61. PubMed ID: 6298869
    [No Abstract]   [Full Text] [Related]  

  • 9. Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli.
    Cozzone AJ; El-Mansi M
    J Mol Microbiol Biotechnol; 2005; 9(3-4):132-46. PubMed ID: 16415587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Regulation of purified NAD-isocitrate dehydrogenase from the pig heart by calcium ions and cAMP-dependent protein kinase].
    Kulinskiĭ VI; Kolpakova TV
    Biull Eksp Biol Med; 1984 Aug; 98(8):188-90. PubMed ID: 6087956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Isocitrate dehydrogenases: forms, localization, properties, and regulation].
    Popova TN
    Biokhimiia; 1993 Dec; 58(12):1861-79. PubMed ID: 8292648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy expenditure in the control of biochemical systems by covalent modification.
    Goldbeter A; Koshland DE
    J Biol Chem; 1987 Apr; 262(10):4460-71. PubMed ID: 3558349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of isocitrate dehydrogenase by phosphorylation involves no long-range conformational change in the free enzyme.
    Hurley JH; Dean AM; Thorsness PE; Koshland DE; Stroud RM
    J Biol Chem; 1990 Mar; 265(7):3599-602. PubMed ID: 2406256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of arginine modification on the catalytic activity and allosteric activation by adenosine diphosphate of the diphosphopyridine nucleotide specific isocitrate dehydrogenase of pig heart.
    Hayman S; Colman RF
    Biochemistry; 1978 Oct; 17(20):4161-8. PubMed ID: 213104
    [No Abstract]   [Full Text] [Related]  

  • 15. The effects of phosphorylation on the structure and function of proteins.
    Johnson LN; Barford D
    Annu Rev Biophys Biomol Struct; 1993; 22():199-232. PubMed ID: 8347989
    [No Abstract]   [Full Text] [Related]  

  • 16. Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects.
    Goldbeter A; Koshland DE
    J Biol Chem; 1984 Dec; 259(23):14441-7. PubMed ID: 6501300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive dehydrogenases within intact rat-kidney mitochondria.
    McCormack JG; Bromidge ES; Dawes NJ
    Biochim Biophys Acta; 1988 Jul; 934(3):282-92. PubMed ID: 2840116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoproteins and related enzymes in isolated synaptic-junctional structures.
    Ng M; Matus AI
    Biochem Soc Trans; 1978; 6(5):995-7. PubMed ID: 217768
    [No Abstract]   [Full Text] [Related]  

  • 19. The phosphatase mechanism of bifunctional kinase/phosphatase AceK.
    Wang S; Shen Q; Chen G; Zheng J; Tan H; Jia Z
    Chem Commun (Camb); 2014 Nov; 50(91):14117-20. PubMed ID: 25272278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reversible phosphorylation of isocitrate dehydrogenase of Salmonella typhimurium.
    Wang JY; Koshland DE
    Arch Biochem Biophys; 1982 Oct; 218(1):59-67. PubMed ID: 6756316
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.